Tetrahedron equations associated with quantized six-vertex models

Okado60@2023/03/08

Akihito Yoneyama Institute of Physics, University of Tokyo, Komaba

Based on: A. Kuniba, S. Matsuike, AY, arXiv:2208.10258

Outline

- Introduction: RLLL relation with q-Oscillator algebra P.3~6

■ Main part: RLLL relations with q-Weyl algebra P.8~16

- Discussion:
- $R R R R$ equations for $R^{A B C}$
- $R^{Z Z Z}$ as intertwiner of $A_{q}\left(A_{2}\right)$
- Root of unity
- Other comments
- Summary

Tetrahedron equation

■ Matrix equation on $V_{1} \otimes \cdots \otimes V_{6}$ (V_{i} : linear space) [Zamolodchikov'81]

- $X_{i j k}(X=A, B, C, D)$ acts non-trivially only on $V_{i} \otimes V_{j} \otimes V_{k}$.

$$
A_{124} B_{135} C_{236} D_{456}=D_{456} C_{236} B_{135} A_{124}
$$

- 3D analog of Yang-Baxter equation (YBE)
\square We can construct a 3D version of transfer matrices similarly to YBE.
■ Several solutions are known although less systematic than YBE.
Zamolodchikov, Baxter, Bazhanov, Korepanov, Mangazeev, Sergeev, Stroganov, Kapranov, Voevodsky, Kazhdan, Soibelman, Carter, Saito, Kuniba, Okado, ...

RLLL relation

- Today, we focus on the $R L L L$ type tetrahedron equation:

$$
L_{124} L_{135} L_{236} R_{456}=R_{456} L_{236} L_{135} L_{124}
$$

■ If we specify the outer lines for $1,2,3$-th spaces, this reads as

- If we can ansatz "good" $L s$, we can then obtain a solution to the $R L L L$ type tetrahedron equation by solving these equations.
■ In fact, it can be done by considering a quantized six vertex model for $L s$.

q-Oscillator algebra valued six vertex model

- q-Oscillator algebra O_{q}
- Genetators: k, $\mathbf{a}^{ \pm}$
\square Relations $\mathbf{k a}^{ \pm}=q^{ \pm} \mathbf{a}^{ \pm} \mathbf{k}, \quad \mathbf{a}^{+} \mathbf{a}^{-}=1-\mathbf{k}^{2}, \quad \mathbf{a}^{-} \mathbf{a}^{+}=1-q^{2} \mathbf{k}^{2}$
\square Representation π_{0} on $F_{+}=\oplus_{m \in \mathbb{Z} \geq 0} \mathbb{C}|m\rangle$:

$$
\pi_{O}: \mathbf{k}|m\rangle=q^{m}|m\rangle, \quad \mathbf{a}^{+}|m\rangle=|m+1\rangle, \quad \mathbf{a}^{-}|m\rangle=\left(1-q^{2}\right)|m-1\rangle
$$

■ L-operator $L^{0} \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes F_{+}\right)$[Bazhanov-Sergeev'06]
$L^{O}(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a, b \in\{0,1\}}|a\rangle \otimes|b\rangle \otimes \pi_{O}\left(\left(L^{O}\right)_{i, j}^{a, b}\right)|k\rangle$
$\left(L^{O}\right)_{i, j}^{a, b}=$ $i \xrightarrow{\stackrel{b}{4}} a$

1

1

$\mu \mathbf{k}$

$-q \mu^{-1} \mathbf{k}$

a^{+}

\mathbf{a}^{-}

$R L L L$ relation for 000

■ Thm: [Bazhanov-Sergeev'06]

- Consider the following $R L L L$ relation for L^{O} :

$$
\frac{L_{124}^{O}}{\mu_{4}} \frac{L_{135}^{O}}{\mu_{5}} \frac{L_{236}^{O}}{\mu_{6}} R_{456}^{O O O}=R_{456}^{O O O} L_{236}^{O} L_{135}^{O} L_{124}^{O}
$$

- $R^{000} \in \operatorname{End}\left(F_{+}^{\otimes 3}\right)$ is uniquely determined and given by

$$
\begin{gathered}
\left(R^{O O O}\right)_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c}\left(\frac{\mu_{3}}{\mu_{2}}\right)^{i}\left(-\frac{\mu_{1}}{\mu_{3}}\right)^{b}\left(\frac{\mu_{2}}{\mu_{1}}\right)^{k} q^{i k+b(k-i+1)}\binom{a+b}{a}_{q^{2}}{ }_{2} \phi_{1}\binom{q^{-2 b}, q^{-2 i}}{q^{-2 a-2 b} ; q^{2}, q^{-2 c}} \\
(z ; q)_{\infty}=\prod_{n \geq 0}\left(1-z q^{n}\right) \quad(z ; q)_{m}=\frac{(z ; q)_{\infty}}{\left(z q^{m} ; q\right)_{\infty}} \quad{ }_{2} \phi_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} q, z\right)=\sum_{n \geq 0} \frac{(\alpha ; q)_{n}(\beta ; q)_{n}}{(\gamma ; q)_{n}(q ; q)_{n}} z^{n}
\end{gathered}
$$

$\square R^{000}$ also satisfies the $R R R R$ type tetrahedron equation:

$$
R_{124}^{O O O} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{O O O}=R_{456}^{O O O} R_{236}^{O O O} R_{135}^{O O O} R_{124}^{O O O}
$$

■ Thm: [Kapranov-Voevodsky'94]
$\square R^{000}=$ intertwiner of irreps of quantum coordinate ring $A_{q}\left(A_{2}\right)$

$$
R^{O O O} \circ\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}(g)\right)\right)=\left(\pi_{2} \otimes \pi_{1} \otimes \pi_{2}(\Delta(g))\right) \circ R^{O O O} \quad{ }^{\forall} g \in A_{q}\left(A_{2}\right)
$$

Outline

■ Introduction: RLLL relation with q-Oscillator algebra

- Main part: RLLL relations with q-Weyl algebra

■ Discussion:

- $R R R R$ equations for $R^{A B C}$
- $R^{Z Z Z}$ as intertwiner of $A_{q}\left(A_{2}\right)$
- Root of unity
- Other comments
- Summary

q-Weyl algebra

- Aim: Generalize the RLLL approach by Bazhanov-Sergeev
- Recall: q-Oscillator algebra O_{q}
\square Genetators: $\mathbf{k}, \mathbf{a}^{ \pm}$
\square Relations $\mathbf{k} \mathbf{a}^{ \pm}=q^{ \pm} \mathbf{a}^{ \pm} \mathbf{k}, \quad \mathbf{a}^{+} \mathbf{a}^{-}=1-\mathbf{k}^{2}, \quad \mathbf{a}^{-} \mathbf{a}^{+}=1-q^{2} \mathbf{k}^{2}$
\square Representation π_{0} on $F_{+}=\oplus_{m \in \mathbb{Z}_{\geq 0}} \mathbb{C}|m\rangle$:

$$
\pi_{O}: \mathbf{k}|m\rangle=q^{m}|m\rangle, \quad \mathbf{a}^{+}|m\rangle=|m+1\rangle, \quad \mathbf{a}^{-}|m\rangle=\left(1-q^{2}\right)|m-1\rangle
$$

■ q-Weyl algebra W_{q}

- Generators: $X^{ \pm 1}, Z^{ \pm 1}$
- Relations: $X Z=q Z X$
\square Representations π_{X}, π_{Z} on $F=\oplus_{m \in \mathbb{Z}} \mathbb{C}|m\rangle$:

$$
\begin{array}{lll}
\pi_{X}: X|m\rangle=q^{m}|m\rangle, & Z|m\rangle=|m+1\rangle & \text { (coordinate rep) } \\
\pi_{Z}: X|m\rangle=|m-1\rangle, & Z|m\rangle=q^{m}|m\rangle & \text { (momentum rep) }
\end{array}
$$

■ An embedding $O_{q} \hookrightarrow W_{q}: \mathbf{k} \mapsto X, \quad \mathbf{a}^{+} \mapsto Z, \quad \mathbf{a}^{-} \mapsto Z^{-1}\left(1-X^{2}\right)$

q-Weyl algebra valued six vertex model

■ L-operators $L^{A}(A=X, Z, O)$ [Kuniba-Matsuike-Y'22]
$\square L^{A} \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes F\right)(A=X, Z)$ and $L^{0} \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes F_{+}\right)$

$$
L^{A}(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a, b \in\{0,1\}}|a\rangle \otimes|b\rangle \otimes \pi_{A}\left(\left(L^{A}\right)_{i, j}^{a, b}\right)|k\rangle \quad(A=X, Z, O)
$$

$\left(L^{X}\right)_{i, j}^{a, b}=\left(L^{Z}\right)_{i, j}^{a, b}$
$\left(L^{O}\right)_{i, j}^{a, b}$

r

1

S

1
$t w X$
$\mu \mathbf{k}$
$t w X$

$-q t X$
$Z \quad Z^{-1}\left(r s-t^{2} w X^{2}\right)$
$-q \mu^{-1} \mathbf{k}$

■ Remark:
$\square L^{X}$ for $(r, s, t, w)=\left(1,1, \mu^{-1}, \mu^{2}\right)$ corresponds to L^{O} via the pullback.
$\square L^{Z}$ doesn't have such a correspondence and behaves differently from L^{0}.
\square Slightly different but similar L^{X} was introduced in [Bazhanov-Mangazeev-Sergeev'10] but L^{Z} is new.

Family of $R L L L$ relations

- Our Problem:
\square Solve the following equation for $R^{A B C}(\mathrm{~A}, \mathrm{~B}, \mathrm{C} \in\{X, Z, O\})$:

\square Each L has different parameters depending on its tensor compoment.

Main result

■ [Kuniba-Matsuike-Y'22]:

- We solved RLLL relations for the following ABCs.

ABC	feature	locally finitenss	\sharp (sector)
ZZZ	factorized	no	4
OZZ	$2 \phi_{1}$	no	
ZZO	${ }^{2} \phi_{1}$	no	1
ZOZ	$3 \phi_{2}$-like	no	
OOZ	factorized	yes	
ZOO	factorized	yes	1
OZO	factorized	no	
OOO	$2 \phi_{1}$	yes	1
XXZ	factorized	no	
ZXX	factorized	no	2
XZX	factorized	no	

\square For all cases, $R^{A B C}$ are uniquely determined in each sector specified by appropriate parity conditions.

- We obtained the explicit formulae for them, where their matrix elements are either factorized or expressed as q-hypergeometric series.

RLLL relation for $Z Z Z$

- Examples of $R L L L$ relation for $Z Z Z$:

$$
\begin{aligned}
& R(1 \otimes X \otimes X)=(1 \otimes X \otimes X) R, \quad R(X \otimes X \otimes 1)=(X \otimes X \otimes 1) R, \\
& -r_{1} r_{3} R(1 \otimes Z \otimes 1)=\left(q t_{1} t_{3} w_{1} X \otimes Z \otimes X-r_{2} Z \otimes 1 \otimes Z\right) R, \\
& R\left(-q t_{1} t_{3} w_{3} X \otimes Z \otimes X+s_{2} Z \otimes 1 \otimes Z\right)=s_{1} s_{3}(1 \otimes Z \otimes 1) R, \\
& t_{1} R\left(X \otimes Z \otimes Z^{-1}\left(r_{3} s_{3}-t_{3}^{2} w_{3} X^{2}\right)+s_{2} t_{3} Z \otimes 1 \otimes X\right)=s_{3} t_{2}(Z \otimes X \otimes 1) R, \\
& R\left(t_{3} w_{3} Z^{-1}\left(r_{1} s_{1}-t_{1}^{2} w_{1} X^{2}\right) \otimes Z \otimes X+s_{2} t_{1} w_{1} X \otimes 1 \otimes Z\right)=s_{1} t_{2} w_{2}(1 \otimes X \otimes Z) R . \\
& \quad \pi_{Z}: X|m\rangle=|m-1\rangle, \quad Z|m\rangle=q^{m}|m\rangle
\end{aligned}
$$

■ Writing down actions of π_{Z}, we obtain recursion relations for $R^{Z Z Z}$:

$$
\begin{aligned}
& R_{i, j-1, k-1}^{a, b, c}=R_{i, j, k}^{a, b+1, c+1}, \quad R_{i-1, j-1, k}^{a, b, c}=R_{i, j, k}^{a+1, b+1, c}, \\
& \left(q^{a+c} r_{2}-q^{j} r_{1} r_{3}\right) R_{i, j, k}^{a, b, c}=q^{1+b} t_{1} t_{3} w_{1} R_{i, j, k}^{a+1, b, c+1} \\
& \left(q^{i+k} s_{2}-q^{b} s_{1} s_{3}\right) R_{i, j, k}^{a, b, c}=q^{1+j} t_{1} t_{3} w_{3} R_{i-1, j, k-1}^{a, b, c}, \\
& q^{j} r_{3} s_{3} t_{1} R_{i-1, j, k}^{a, b, c}-q^{j+2} t_{1} t_{3}^{2} w_{3} R_{i-1, j, k-2}^{a, b, c}+q^{i+k} s_{2} t_{3} R_{i, j, k-1}^{a, b, c}=q^{a+k} s_{3} t_{2} R_{i, j, k}^{a, b+1, c}, \\
& q^{j} r_{1} s_{1} t_{3} w_{3} R_{i, j, k-1}^{a, b, c}-q^{j+2} t_{1}^{2} t_{3} w_{1} w_{3} R_{i-2, j, k-1}^{a, b, c}+q^{i+k} s_{2} t_{1} w_{1} R_{i-1, j, k}^{a, b, c}=q^{c+i} s_{1} t_{2} w_{2} R_{i, j, k}^{a, b+1, c}
\end{aligned}
$$

- Fact: Recursion relations for $Z Z Z$ consists of 4 disjoint sets, which are specified with the parity pair $\left(d_{1}, d_{2}\right)=(a+c-j, b-i-k)$.

RLLL relation for ZZZ

■ Thm: [Kuniba-Matsuike-Y'22]

- $R^{Z Z Z} \in \operatorname{End}\left(F^{\otimes 3}\right)$ is uniquely determined in each sector and given by

$$
\begin{aligned}
R_{i, j, k}^{a, b, c}= & \left(\frac{r_{2}}{t_{1} t_{3} w_{1}}\right)^{\frac{d_{1}}{2}}\left(\frac{s_{2}}{t_{1} t_{3} w_{3}}\right)^{\frac{d_{2}}{2}}\left(\frac{t_{2}}{s_{1} t_{3}}\right)^{\frac{d_{3}}{2}}\left(\frac{t_{2} w_{2}}{s_{3} t_{1} w_{1}}\right)^{\frac{d_{4}}{2}} \\
& \times q^{\varphi} \frac{\Phi_{d_{2}}\left(\frac{s_{1} s_{3}}{s_{2}}\right) \Phi_{d_{3}}\left(\frac{r_{3} w_{2}}{s_{3} w_{1}}\right) \Phi_{d_{4}}\left(\frac{r_{1} w_{3}}{s_{1} w_{2}}\right)}{\Phi_{-d_{1}}\left(\frac{q^{2} r_{1} r_{3}}{r_{2}}\right) \Phi_{d_{3}+d_{4}}\left(\frac{r_{1} r_{3} w_{3}}{s_{1} s_{3} w_{1}}\right)}, \quad a, b, c, i, j, k \in \mathbb{Z} \\
\varphi= & \frac{1}{4}\left(\left(d_{1}-d_{2}\right)\left(d_{1}+d_{2}+d_{3}+d_{4}\right)+d_{3} d_{4}\right)-d_{1}, \\
\binom{d_{1}}{d_{2}}= & \binom{a+c-j}{b-i-k}, \quad\binom{d_{3}}{d_{4}}=\binom{-a-b+c+i+j-k}{a-b-c-i+j+k} \\
\Phi_{m}(z)= & \frac{1}{\left(z q^{m} ; q^{2}\right)_{\infty}} \quad(m \in \mathbb{Z}),
\end{aligned}
$$

Features:
\square The matrix elements of $R^{Z Z Z}$ are factorized.
$\square R^{Z Z Z}$ is not locally finite.
\square There are 4 sectors specified with the parity pair $\left(d_{1}, d_{2}\right)$.

$R L L L$ relation for OZZ

■ Thm: [Kuniba-Matsuike-Y'22]

- $R^{O Z Z} \in \operatorname{End}\left(F_{+} \otimes F \otimes F\right)$ is uniquely determined and given by

$$
\begin{gathered}
R_{i, j, k}^{a, b, c}=\theta(i \geq 0)\left(\frac{r_{2}}{r_{3}}\right)^{a}\left(\frac{s_{3}}{s_{2}}\right)^{i}\left(\frac{t_{2} w_{2}}{\mu s_{2}}\right)^{-b+j}\left(-\frac{\mu t_{3}}{r_{3}}\right)^{-c+k} \frac{\left(z ; q^{2}\right)_{a}}{\left(q^{2} ; q^{2}\right)_{a}} q^{(a-b+j-1) c-(i-b+j-1) k-a j+b i} \\
\times{ }_{2} \phi_{1}\left(\begin{array}{l}
q^{-2 i}, z^{-1} q^{2} \\
\left.z^{-1} q^{-2 a+2} ; q^{2}, y q^{2 i+2 j-2 a-2 b}\right) . \\
\mu=\mu_{4}, \quad y=\frac{r_{3} w_{3}}{\mu^{2} s_{3}}, \quad z=q^{2 k-2 c+2} \frac{\mu^{2} s_{2}}{r_{2} w_{2}}
\end{array}, \quad, i \in \mathbb{Z} \geq 0, b, c, j, k \in \mathbb{Z}\right. \\
\end{gathered}
$$

- Features:
- The matrix elements of $R^{o z Z}$ are expressed as q-hypergeometric series.
- $R^{0 Z Z}$ is not locally finite.
- There is only 1 sector.

RLLL relation for OOZ

- Thm: [Kuniba-Matsuike-Y'22]
- $R^{00 Z} \in \operatorname{End}\left(F_{+} \otimes F_{+} \otimes F\right)$ is uniquely determined and non-trivial iff $\mu_{1} / \mu_{2}=q^{d}$ for $\mathrm{d} \in \mathbb{Z}$. In that case, it is given by

$$
\begin{aligned}
R(d)_{i, j, k}^{a, b, c}= & \theta(e \in \mathbb{Z}) \theta(\min (i, j) \geq 0) \delta_{i+j}^{a+b} \quad a, b, i, j \in \mathbb{Z} \geq 0, c, k \in \mathbb{Z} \\
& \times s_{3}^{i}\left(\mu_{2} t_{3}\right)^{-a}\left(\frac{\mu_{2} s_{3}}{t_{3} w_{3}}\right)^{j}\left(\frac{t_{3}^{2} w_{3}}{r_{3} s_{3}}\right)^{e} q^{c j-b k} \frac{\left(q^{2+2 e-2 j} ; q^{2}\right)_{j}\left(q^{2 a+2} ; q^{2}\right)_{i-a}}{\left(q^{2} ; q^{2}\right)_{f}\left(q^{2 a-2 e} ; q^{2}\right)_{e-a}} \\
& =\frac{1}{2}(a-c+j+k+d), \quad f=\frac{1}{2}(b+c+i-k-d)
\end{aligned}
$$

- Features:
- The matrix elements of $R^{00 Z}$ are factorized.
- $R^{00 Z}$ is locally finite.
- There is only 1 sector but $R^{00 Z}$ is non-trivial if the parity of $2 e$ is even.

RLLL relation for 000

- Thm: [Bazhanov-Sergeev'06]
$\square R^{000} \in \operatorname{End}\left(F_{+}^{\otimes 3}\right)$ is uniquely determined and given by

$$
\begin{array}{r}
\left(R^{O O O}\right)_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c}\left(\frac{\mu_{3}}{\mu_{2}}\right)^{i}\left(-\frac{\mu_{1}}{\mu_{3}}\right)^{b}\left(\frac{\mu_{2}}{\mu_{1}}\right)^{k} q^{i k+b(k-i+1)}\binom{a+b}{a}_{q^{2}}{ }^{2} \phi_{1}\binom{q^{-2 b}, q^{-2 i} ; q^{-2 a}, q^{-2 c}}{q^{-2 a-2 b} ; q^{2}} \\
a, b, c, i, j, k \in \mathbb{Z}_{\geq 0}
\end{array}
$$

Features:

- The matrix elements of R^{000} are expressed as q-hypergeometric series.
- R^{000} is locally finite.
- There is only 1 sector.
- R^{000} also satisfies the following tetrahedron equation:

$$
R_{124}^{O O O} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{O O O}=R_{456}^{O O O} R_{236}^{O O} R_{135}^{O O O} R_{124}^{O O O}
$$

- $R^{000}=$ intertwiner of irreps of quantum coordinate ring $A_{q}\left(A_{2}\right)$

$$
\begin{array}{r}
R^{O O O} \circ\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}(g)\right)\right)=\left(\pi_{2} \otimes \pi_{1} \otimes \pi_{2}(\Delta(g))\right) \circ R^{O O O} \quad{ }^{\circ} g \in A_{q}\left(A_{2}\right) \\
\pi_{i}: A_{q}\left(A_{2}\right) \rightarrow \operatorname{End}\left(F_{+}\right)
\end{array}
$$

Outline

■ Introduction: RLLL relation with q-Oscillator algebra P.3~6
■ Main part: RLLL relations with q-Weyl algebra P.8~16
■ Discussion: P.18~24

- $R R R R$ equations for $R^{A B C}$
- $R^{Z Z Z}$ as intertwiner of $A_{q}\left(A_{2}\right)$
- Root of unity
- Other comments

■ Summary

$R R R R$ equation as associaticity

■ If we have $L_{124} L_{135} L_{236} R_{456}=R_{456} L_{236} L_{135} L_{124}$, we have

$$
\begin{aligned}
& R_{124} R_{135} R_{236} R_{456} L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1} \\
& =R_{124} R_{135} R_{236} L_{\beta \gamma 4} L_{\alpha \gamma 5} \underline{L_{\alpha \beta 6} L_{\alpha \delta 3} L_{\beta \delta 2}} L_{\gamma \delta 1} R_{456} \\
& =R_{124} R_{135} L_{\beta \gamma 4} \underline{L_{\alpha \gamma 5} L_{\beta \delta 2}} L_{\alpha \delta 3} \underline{L_{\alpha \beta 6} L_{\gamma \delta 1}} R_{236} R_{456} \\
& =R_{124} R_{135} L_{\beta \gamma 4} L_{\beta \delta 2} \frac{L_{\alpha \gamma 5}}{} L_{\alpha \delta 3} L_{\gamma \delta 1} L_{\alpha \beta 6} R_{236} R_{456} \\
& =R_{124} L_{\beta \gamma 4} L_{\beta \delta 2} L_{\gamma \delta 1} L_{\alpha \delta 3} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{135} R_{236} R_{456} \\
& =L_{\gamma \delta 1} L_{\beta \delta 2} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{124} R_{135} R_{236} R_{456} \\
& =L_{\gamma \delta 1} L_{\beta \delta 2} L_{\alpha \delta 3} L_{\beta \gamma 4} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{124} R_{135} R_{236} R_{456}
\end{aligned}
$$

- $R_{456} R_{236} R_{135} R_{124}$ also gives an intertwiner for $\left\{\begin{array}{l}L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1} \\ L_{\gamma \delta 1} L_{\beta \delta 2} L_{\alpha \delta 3} L_{\beta \gamma 4} L_{\alpha \gamma 5} L_{\alpha \beta 6}\end{array}\right.$

■ If they are irreducible and equivalent, we have

$$
R_{124} R_{135} R_{236} R_{456}=R_{456} R_{236} R_{135} R_{124} \quad \text { (up to normalization) }
$$

$R R R R$ equations for $R^{A B C}$

■ For our $R L L L$ relations, we expect the following $R R R R$ equation holds:

$$
R_{124}^{A B D} R_{135}^{A C E} R_{236}^{B C F} R_{456}^{D E F}=R_{456}^{D E F} R_{236}^{B C F} R_{135}^{A C E} R_{124}^{A B D}
$$

- Remark:

$$
A, B, C, D, E, F \in\{X, Z, O\}
$$

- Each tensor component is assigned with different parameters.
- e.g. If $A=B=C=D=E=F=Z$, this depends on $r_{i}, s_{i}, t_{i}, w_{i}(i=1, \ldots, 6)$.
$\square R^{A B C}$ s except for $A B C=O O Z, Z O O, O O O$ are not locally finite, so the convergence of $R R R R$ equation is non-trivial for such cases.
$\square L^{Z}$ is not irreducible because $\left(L^{Z}\right)_{i, j}^{a, b}$ does not include X^{-1}.

r

s

$t w X$

$-q t X$

$$
\pi_{Z}: X|m\rangle=|m-1\rangle, \quad Z|m\rangle=q^{m}|m\rangle
$$

$R R R R$ equations for $R^{A B C}$

■ Conjecture: [Kuniba-Matsuike-Y'22]

- The following $R R R R$ equations are valid:

$$
\begin{aligned}
& R_{456}^{O O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{O O O} \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{O O O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{Z O O} \\
& R_{456}^{O O Z} R_{236}^{O O Z} R_{135}^{O O O} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O O} R_{236}^{O O Z} R_{456}^{O O Z} \\
& R_{456}^{O O Z} R_{236}^{O O Z} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O Z} R_{456}^{O O Z} . \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O O} R_{456}^{O O O} \\
& R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{O Z O} \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z O}=R_{124}^{Z Z O} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{O O O} \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O Z}=R_{124}^{Z O Z} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{Z O O} \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z Z}=R_{124}^{O Z Z} R_{135}^{O O O} R_{236}^{Z O O} R_{456}^{Z O O} \\
& R_{456}^{Z Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{Z Z O} \\
& R_{456}^{Z O Z} R_{236}^{O O Z} R_{135}^{O O O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O O} R_{236}^{O O Z} R_{456}^{Z O Z} \\
& R_{456}^{O Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{O Z Z} \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z Z}=R_{124}^{Z Z Z} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{Z O O} \text {, } \\
& R_{456}^{Z Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{Z Z Z} .
\end{aligned}
$$

$$
\begin{aligned}
& R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{O O} \\
& R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{Z Z O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z O} R_{236}^{O Z O} R_{456}^{O O O} \\
& R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{Z O Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O Z} R_{236}^{O O O} R_{456}^{O Z O} \\
& R_{456}^{O O O} R_{236}^{Z Z O} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z O} R_{456}^{O O O} \\
& R_{456}^{O O Z} R_{236}^{Z O Z} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O Z} R_{456}^{O O Z} \\
& R_{456}^{Z O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{Z O O} \\
& R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{O Z Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O Z Z} R_{236}^{O Z O} R_{456}^{O Z O} \\
& R_{456}^{O O Z} R_{236}^{O Z Z} R_{135}^{O Z O} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O Z O} R_{236}^{O Z Z} R_{456}^{O O Z} \\
& R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{Z Z Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z Z} R_{236}^{O Z O} R_{456}^{O Z O}, \\
& R_{456}^{O O Z} R_{236}^{Z Z Z} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z Z} R_{456}^{O O Z} .
\end{aligned}
$$

Rermark: Each equation is checked for over 10000 outer lines by computer.

$R^{Z Z Z}$ as intertwiner of $A_{q}\left(A_{2}\right)$

- Proposition: [Kuniba-Matsuike-Y'22]
- $R^{Z Z Z} \in \operatorname{End}\left(F^{\otimes 3}\right)$ satisfies the following intertwining relation of the quantum coordinate ring $A_{q}\left(A_{2}\right)$:

$$
R^{Z Z Z} \circ\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}(g)\right)\right)=\left(\pi_{2} \otimes \pi_{1} \otimes \pi_{2}(\Delta(g))\right) \circ R^{Z Z Z} \quad \forall g \in A_{q}\left(A_{2}\right)
$$

- $\pi_{i}=\pi_{Z} \circ \varrho_{i}$, where ϱ_{1} and ϱ_{2} are respectively given by $t_{i j}$: generators of $A_{q}\left(A_{2}\right)$

$$
\left(\begin{array}{lll}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
Z^{-1}\left(u_{1}-g_{1} h_{1} X^{2}\right) & g_{1} X & 0 \\
-q h_{1} X & Z & 0 \\
0 & 0 & u_{1}^{-1}
\end{array}\right),\left(\begin{array}{ccc}
u_{2}^{-1} & 0 & 0 \\
0 & Z^{-1}\left(u_{2}-g_{2} h_{2} X^{2}\right) & g_{2} X \\
0 & -q h_{2} X & Z
\end{array}\right)
$$

ㅁ π_{i} s are not irreducible. $\quad \pi_{Z}: X|m\rangle=|m-1\rangle, \quad Z|m\rangle=q^{m}|m\rangle$
\square Identification of parameters is done as follows:

$$
\begin{gathered}
u_{1}=u_{2}(=: u) \quad g_{1} h_{1}=g_{2} h_{2}(=: p) \\
\frac{r_{1}}{t_{1}}=\frac{r_{2}}{t_{2}}, \quad \frac{s_{2}}{t_{2}}=\frac{s_{3}}{t_{3}}, \quad \frac{r_{2}}{r_{1} r_{3}}=u, \quad \frac{s_{1} s_{3}}{s_{2}}=u^{2}, \quad \frac{t_{1}^{2} w_{1}}{r_{1} s_{1}}=\frac{t_{2}^{2} w_{2}}{r_{2} s_{2}}=\frac{t_{3}^{2} w_{3}}{r_{3} s_{3}}=\frac{p}{u} .
\end{gathered}
$$

- If we specialize q to a root of unity, the Fock spaces F, F_{+}become finite dimensional. If we can formulate $R^{A B C}$ in such cases...
- Extension of family of $R R R R$ equations:
- Getting over its non locally finiteness, we obtain more family of $R R R R$ equations.
- Connection with physical models:
- Finite dimensional solutions to tetrahedron equations are quite important because they can be used to construct tractable 3D transfer matrices.
- [Bazhanov-Mangazeev-Sergeev' 10] introduced $\left(L^{X}\right)^{\prime}$ which is slightly different from L^{X} and solved $\left(R^{X X X}\right)^{\prime}$ at N-th root of unity. They found $\left(R^{X X X}\right)^{\prime} \cong$ Bazhanov-Baxter model
(spectral parameter dependent solution to tetrahedron equation)
- reduction [Bazhanov-Baxter'92]
generalized chiral Potts model
$\cong 2 \mathrm{D} R$ matrices associated with $U_{q}\left(A_{n-1}^{(1)}\right)$ at root of unity

Other comments

- Boundary integrability in 3D:
$R(L L L)=(L L L) R$
(Yang-Baxter equation up to conjugation) $\Rightarrow \begin{gathered}R R R R=R R R R \\ \text { (Tetrahedron equation) }\end{gathered}$

$$
\begin{gathered}
K(L G L G)=(G L G L) K \\
\text { (reflection equation up to conjugation) }
\end{gathered} \Rightarrow \begin{gathered}
\text { RKRRKKR=RKKRRKR } \\
\text { (3D reflection equation) }
\end{gathered}
$$

- a q-Weyl algebra version of [Kuniba-Pasquier'18], [Kuniba-Okado-Y'19]?
- Reduction to 2D:
- Generally, infinitely many solutions to the Yang-Baxter equation are obtained from one solution to the tetrahedron equation.
- For R^{000}, they are identified with R matrices associated with

reduction	R matrices \quad [Kuniba Okado'14]
by trace	$U_{q}\left(A_{n-1}^{(1)}\right)$, symmetric tensor rep.
by boundary vector	$U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(C_{n}^{(1)}\right)$, Fock rep.

Other comments

- Characterization in terms of PBW bases:
- Let us consider the transition matrix γ for PBW bases of quantum enveloping algebra $U_{q}\left(A_{2}\right)$:

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \cdots(*) \quad i, j, k, a, b, c \in \mathbb{Z}_{\geq 0}
$$

$\square e_{i}^{(a)}$: divided power given by $e_{i}^{(a)}=e_{i}^{a} /[a]$!

- Theorem: [Sergeev'07], [Kuniba-Okado-Yamada'13]

$$
\gamma_{i, j, k}^{a, b, c}=\left(R^{O O O}\right)_{i, j, k}^{a, b, c}
$$

\square Can we formulate $R^{A B C}$ in this context?

Summary

- We considered three kinds of L-operators $L^{X}, \mathrm{~L}^{\mathrm{Z}}, \mathrm{L}^{0}$ and $R L L L$ relations which they satisfy. They can be regarded as q Oscillator or q-Weyl algebra valued six vertex models.
■ We solved these $R L L L$ relations and obtained explicit formulae for $R^{A B C}$. For all cases, $R^{A B C}$ are uniquely determined in each sector specified by appropriate parity conditions and their matrix elements are either factorized or expressed as qhypergeometric series.
- By computer experiments, we conjectured $R R R R$ equations for $R^{A B C}$. This is motivated by earlier results about representation theoretic origin of R^{000}.
- We found $R^{Z Z Z}$ satisfies an intertwining relation for reducible representations of $A_{q}\left(A_{2}\right)$.

