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◼ Introduction: 𝑅𝐿𝐿𝐿 relation with 𝑞-Oscillator algebra
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Tetrahedron equation

◼ Matrix equation on 𝑉1 ⊗⋯⊗𝑉6 (𝑉𝑖 : linear space)

 𝑋𝑖𝑗𝑘 (𝑋 = 𝐴, 𝐵, 𝐶, 𝐷) acts non-trivially only on 𝑉𝑖 ⊗𝑉𝑗 ⊗𝑉𝑘.

◼ 3D analog of Yang-Baxter equation (YBE)
 We can construct a 3D version of transfer matrices similarly to YBE.

◼ Several solutions are known although less systematic than YBE.
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[Zamolodchikov’81]

Zamolodchikov, Baxter, Bazhanov, Korepanov, Mangazeev, Sergeev, Stroganov,

Kapranov, Voevodsky, Kazhdan, Soibelman, Carter, Saito, Kuniba, Okado, …



𝑅𝐿𝐿𝐿 relation 4/25

◼ Today, we focus on the 𝑅𝐿𝐿𝐿 type tetrahedron equation: 

◼ If we specify the outer lines for 1,2,3-th spaces, this reads as

◼ For each (𝑖, 𝑗, 𝑘, 𝑎, 𝑏, 𝑐), (∗) gives linear equations for 𝑅.

◼ If we can ansatz ``good” 𝐿s, we can then obtain a solution to the 𝑅𝐿𝐿𝐿
type tetrahedron equation by solving these equations.

◼ In fact, it can be done by considering a quantized six vertex model for 𝐿s.

=

=



𝑞-Oscillator algebra valued six vertex model

◼ 𝑞-Oscillator algebra 𝑂𝑞
 Genetators: 𝐤, 𝐚±

 Relations: 

 Representation 𝜋𝑂 on                               :

◼ 𝐿-operator 𝐿𝑂 ∈ End(ℂ2 ⊗ℂ2 ⊗𝐹+)
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1 1 𝜇𝐤 −𝑞𝜇−1𝐤 𝐚+ 𝐚−

=

𝜇: parameter

[Bazhanov-Sergeev’06]



𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑂

◼ Thm: [Bazhanov-Sergeev’06]

 Consider the following 𝑅𝐿𝐿𝐿 relation for 𝐿𝑂:

 𝑅𝑂𝑂𝑂 ∈ End(𝐹+
⊗3) is uniquely determined and given by

 𝑅𝑂𝑂𝑂 also satisfies the 𝑅𝑅𝑅𝑅 type tetrahedron equation:

◼ Thm: [Kapranov-Voevodsky’94]

 𝑅𝑂𝑂𝑂 = intertwiner of irreps of quantum coordinate ring 𝐴𝑞(𝐴2)
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◼

◼ Main part: 𝑅𝐿𝐿𝐿 relations with 𝑞-Weyl algebra
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𝑞-Weyl algebra

◼ Aim: Generalize the 𝑅𝐿𝐿𝐿 approach by Bazhanov-Sergeev

◼ Recall: 𝑞-Oscillator algebra 𝑂𝑞
 Genetators: 𝐤, 𝐚±

 Relations: 

 Representation 𝜋𝑂 on                               :

◼ 𝑞-Weyl algebra 𝑊𝑞

 Generators: 𝑋±1, 𝑍±1

 Relations: 𝑋𝑍 = 𝑞𝑍𝑋

 Representations 𝜋𝑋, π𝑍 on :

◼ An embedding 𝑂𝑞 ↪𝑊𝑞:
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(coordinate rep)

(momentum rep)



◼ 𝐿-operators 𝐿𝐴 (𝐴 = 𝑋, 𝑍, 𝑂)
 𝐿𝐴 ∈ End ℂ2 ⊗ℂ2 ⊗𝐹 𝐴 = 𝑋, 𝑍 and 𝐿𝑂 ∈ End(ℂ2 ⊗ℂ2 ⊗𝐹+)

◼ Remark:

 𝐿𝑋 for 𝑟, 𝑠, 𝑡, 𝑤 = (1,1, 𝜇−1, 𝜇2) corresponds to 𝐿𝑂 via the pullback.

 𝐿𝑍 doesn’t have such a correspondence and behaves differently from 𝐿𝑂.

 Slightly different but similar 𝐿𝑋 was introduced in [Bazhanov-
Mangazeev-Sergeev’10] but 𝐿𝑍 is new.

𝑞-Weyl algebra valued six vertex model 9/25

𝑟, 𝑠, 𝑡, 𝑤, 𝜇: parameters

𝑟 𝑠 𝑡𝑤𝑋 −𝑞𝑡𝑋 𝑍 𝑍−1(𝑟𝑠 − 𝑡2𝑤𝑋2)

1 1 𝜇𝐤 −𝑞𝜇−1𝐤 𝐚+ 𝐚−

[Kuniba-Matsuike-Y’22]



Family of 𝑅𝐿𝐿𝐿 relations

◼ Our Problem: 

 Solve the following equation for 𝑅𝐴𝐵𝐶 (A, B, C ∈ {𝑋, 𝑍, 𝑂}):

 Each 𝐿 has different parameters depending on its tensor compoment.

10/25

___ ___ ___ ___ ___ ___

𝑟4, 𝑠4, 𝑡4, 𝑤4 or 𝜇4

𝑟5, 𝑠5, 𝑡5, 𝑤5 or 𝜇5

𝑟6, 𝑠6, 𝑡6, 𝑤6 or 𝜇6



Main result

◼ [Kuniba-Matsuike-Y’22]:
 We solved 𝑅𝐿𝐿𝐿 relations for the following 𝐴𝐵𝐶s.

 For all cases, 𝑅𝐴𝐵𝐶 are uniquely determined in each sector specified by 
appropriate parity conditions.

 We obtained the explicit formulae for them, where their matrix 
elements are either factorized or expressed as q-hypergeometric series.
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𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍

◼ Examples of 𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍:

◼ Writing down actions of 𝜋𝑍, we obtain recursion relations for 𝑅𝑍𝑍𝑍 :

◼ Fact:  Recursion relations for 𝑍𝑍𝑍 consists of 4 disjoint sets, which 
are specified with the parity pair (𝑑1, 𝑑2) = (𝑎 + 𝑐 − 𝑗, 𝑏 − 𝑖 − 𝑘).
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𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍 13/25

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑍𝑍𝑍 ∈ End(𝐹⊗3) is uniquely determined in each sector and given by

◼ Features:

 The matrix elements of 𝑅𝑍𝑍𝑍 are factorized.

 𝑅𝑍𝑍𝑍 is not locally finite.

 There are 4 sectors specified with the parity pair (𝑑1, 𝑑2).



𝑅𝐿𝐿𝐿 relation for 𝑂𝑍𝑍

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑂𝑍𝑍 ∈ End(𝐹+ ⊗𝐹⊗𝐹) is uniquely determined and given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑍𝑍 are expressed as q−hypergeometric series.

 𝑅𝑂𝑍𝑍 is not locally finite.

 There is only 1 sector.
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𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑍 15/25

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑂𝑂𝑍 ∈ End(𝐹+ ⊗𝐹+ ⊗𝐹) is uniquely determined and non-trivial iff

𝜇1 /𝜇2 = 𝑞𝑑 for d ∈ ℤ. In that case, it is given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑂𝑍 are factorized.

 𝑅𝑂𝑂𝑍 is locally finite.

 There is only 1 sector but 𝑅𝑂𝑂𝑍 is non-trivial if the parity of 2𝑒 is even.



𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑂

◼ Thm: [Bazhanov-Sergeev’06]

 𝑅𝑂𝑂𝑂 ∈ End(𝐹+
⊗3) is uniquely determined and given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑂𝑂 are expressed as q−hypergeometric series.

 𝑅𝑂𝑂𝑂 is locally finite.

 There is only 1 sector.

 𝑅𝑂𝑂𝑂 also satisfies the following tetrahedron equation:

 𝑅𝑂𝑂𝑂 = intertwiner of irreps of quantum coordinate ring 𝐴𝑞(𝐴2)
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◼

◼

◼ Discussion:

 𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

 𝑅𝑍𝑍𝑍 as intertwiner of 𝐴𝑞(𝐴2)

 Root of unity

 Other comments

◼

P.18~24



𝑅𝑅𝑅𝑅 equation as associaticity

◼ If we have , we have

◼ 𝑅456𝑅236𝑅135𝑅124 also gives an intertwiner for 

◼ If they are irreducible and equivalent, we have
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(up to normalization)



𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

◼ For our 𝑅𝐿𝐿𝐿 relations, we expect the following 𝑅𝑅𝑅𝑅 equation 
holds:

◼ Remark:

 Each tensor component is assigned with different parameters.

 e.g. If 𝐴 = 𝐵 = 𝐶 = 𝐷 = 𝐸 = 𝐹 = 𝑍, this depends on 𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑤𝑖 (𝑖 = 1,… , 6).

 𝑅𝐴𝐵𝐶s except for 𝐴𝐵𝐶 = 𝑂𝑂𝑍, 𝑍𝑂𝑂, 𝑂𝑂𝑂 are not locally finite, so the 
convergence of 𝑅𝑅𝑅𝑅 equation is non-trivial for such cases.

 𝐿𝑍 is not irreducible because 𝐿𝑍 𝑖,𝑗
𝑎,𝑏

does not include 𝑋−1.

19/25

𝑟 𝑠 𝑡𝑤𝑋 −𝑞𝑡𝑋 𝑍 𝑍−1(𝑟𝑠 − 𝑡2𝑤𝑋2)



𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

◼ Conjecture: [Kuniba-Matsuike-Y’22]
 The following 𝑅𝑅𝑅𝑅 equations are valid:
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Rermark: Each equation is checked for 

over 10000 outer lines by computer.



𝑅𝑍𝑍𝑍 as intertwiner of 𝐴𝑞(𝐴2)

◼ Proposition: [Kuniba-Matsuike-Y’22]
 𝑅𝑍𝑍𝑍 ∈ End(𝐹⊗3) satisfies the following intertwining relation of the 

quantum coordinate ring 𝐴𝑞(𝐴2):

 𝜋𝑖 = 𝜋𝑍 ∘ 𝜚𝑖 , where 𝜚1 and 𝜚2 are respectively given by

 𝜋𝑖s are not irreducible.

 Identification of parameters is done as follows:
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𝑡𝑖𝑗 : generators of 𝐴𝑞(𝐴2)



Root of unity

◼ If we specialize 𝑞 to a root of unity, the Fock spaces 𝐹, 𝐹+ become 
finite dimensional. If we can formulate 𝑅𝐴𝐵𝐶 in such cases…

◼ Extension of family of 𝑅𝑅𝑅𝑅 equations:

 Getting over its non locally finiteness, we obtain more family of 𝑅𝑅𝑅𝑅
equations.

◼ Connection with physical models:

 Finite dimensional solutions to tetrahedron equations are quite 
important because they can be used to construct tractable 3D transfer 
matrices.

 [Bazhanov-Mangazeev-Sergeev’10] introduced (𝐿𝑋)′ which is slightly 
different from 𝐿𝑋 and solved (𝑅𝑋𝑋𝑋)′ at 𝑁-th root of unity. They found

22/25

(𝑅𝑋𝑋𝑋)′ ≅ Bazhanov-Baxter model

(spectral parameter dependent solution to tetrahedron equation)

generalized chiral Potts model

≅ 2D 𝑅 matrices associated with 𝑈𝑞(𝐴𝑛−1
(1)

) at root of unity

reduction [Bazhanov-Baxter’92]



Other comments

◼ Boundary integrability in 3D:

 a 𝑞-Weyl algebra version of [Kuniba-Pasquier’18], [Kuniba-Okado-Y’19]?

◼ Reduction to 2D:
 Generally, infinitely many solutions to the Yang-Baxter equation are 

obtained from one solution to the tetrahedron equation.

 For 𝑅𝑂𝑂𝑂, they are identified with 𝑅 matrices associated with

23/25

𝑅 𝐿𝐿𝐿 = 𝐿𝐿𝐿 𝑅
(Yang-Baxter equation up to conjugation)

RRRR=RRRR

(Tetrahedron equation)

𝐾 𝐿𝐺𝐿𝐺 = 𝐺𝐿𝐺𝐿 𝐾
(reflection equation up to conjugation)

RKRRKKR=RKKRRKR

(3D reflection equation)

reduction 𝑅 matrices

by trace 𝑈𝑞(𝐴𝑛−1
(1)

), symmetric tensor rep.

by boundary 

vector
𝑈𝑞(𝐷𝑛+1

(2)
), 𝑈𝑞(𝐴2𝑛

(2)
), 𝑈𝑞(𝐶𝑛

(1)
), Fock rep.

[Kuniba-Okado’14]



Other comments

◼ Characterization in terms of PBW bases:

 Let us consider the transition matrix 𝛾 for PBW bases of quantum 
enveloping algebra 𝑈𝑞(𝐴2):

 𝑒𝑖
(𝑎)

: divided power given by 𝑒𝑖
(𝑎)

= 𝑒𝑖
𝑎/[𝑎]!

 Theorem: [Sergeev’07], [Kuniba-Okado-Yamada’13]

 Can we formulate 𝑅𝐴𝐵𝐶 in this context?
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Summary

◼ We considered three kinds of 𝐿-operators 𝐿𝑋, LZ, LO and 𝑅𝐿𝐿𝐿
relations which they satisfy. They can be regarded as 𝑞-
Oscillator or 𝑞-Weyl algebra valued six vertex models.

◼ We solved these 𝑅𝐿𝐿𝐿 relations and obtained explicit formulae 
for 𝑅𝐴𝐵𝐶 . For all cases, 𝑅𝐴𝐵𝐶 are uniquely determined in each 
sector specified by appropriate parity conditions and their 
matrix elements are either factorized or expressed as q-
hypergeometric series.

◼ By computer experiments, we conjectured 𝑅𝑅𝑅𝑅 equations for 
𝑅𝐴𝐵𝐶 . This is motivated by earlier results about representation 
theoretic origin of 𝑅𝑂𝑂𝑂.

◼ We found 𝑅𝑍𝑍𝑍 satisfies an intertwining relation for reducible
representations of 𝐴𝑞(𝐴2).
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