New solutions to the tetrahedron equation associated with quantized six-vertex models

Mathematical Society of Japan Spring Meeting Chuo University@2023/03/18

Akihito Yoneyama Institute of Physics, University of Tokyo, Komaba

Based on: A. Kuniba, S. Matsuike, <u>AY</u>, arXiv:2208.10258

Tetrahedron equation

■ Matrix equation on $V_1 \otimes \cdots \otimes V_6$ (V_i : linear space) [Zamolodchikov'81] □ X_{ijk} (X = A, B, C, D) acts non-trivially only on $V_i \otimes V_j \otimes V_k$.

 $A_{124}B_{135}C_{236}D_{456} = D_{456}C_{236}B_{135}A_{124}$

- 3D analog of Yang-Baxter equation (YBE)
 We can construct a 3D version of transfer matrices similarly to YBE.
- Several solutions are known although less systematic than YBE. Zamolodchikov, Baxter, Bazhanov, Korepanov, Mangazeev, Sergeev, Stroganov, Kapranov, Voevodsky, Kazhdan, Soibelman, Carter, Saito, Kuniba, Okado, ...

RLLL relation

Today, we focus on the *RLLL* type tetrahedron equation:

$L_{124}L_{135}L_{236}R_{456} = R_{456}L_{236}L_{135}L_{124}$

If we specify the outer lines for 1,2,3-th spaces, this reads as

For each (i, j, k, a, b, c), (*) gives linear equations for R.

If we can ansatz ``good" Ls, we can then obtain a solution to the RLLL type tetrahedron equation by solving these equations.

In fact, it can be done by considering a quantized six vertex model for *L*s.

q-Oscillator algebra valued six vertex model 4/15

RLLL relation for 000

<u>Thm</u>: [Bazhanov-Sergeev'06]
 Consider the following *RLLL* relation for *L⁰*:

$$\frac{L_{124}^{O}L_{135}^{O}L_{236}^{O}R_{456}^{OOO}}{\mu_{4}} = R_{456}^{OOO}L_{236}^{O}L_{135}^{O}L_{124}^{O}$$

□ $R^{000} \in \text{End}(F_+^{\otimes 3})$ is uniquely determined and given by

$$(R^{OOO})_{i,j,k}^{a,b,c} = \delta_{i+j}^{a+b} \delta_{j+k}^{b+c} \left(\frac{\mu_3}{\mu_2}\right)^i \left(-\frac{\mu_1}{\mu_3}\right)^b \left(\frac{\mu_2}{\mu_1}\right)^k q^{ik+b(k-i+1)} \binom{a+b}{a}_{q^2} {}^{2\phi_1} \left(\frac{q^{-2b}, q^{-2i}}{q^{-2a-2b}}; q^2, q^{-2c}\right)$$

$$(z;q)_{\infty} = \prod_{n \ge 0} (1 - zq^n) \qquad (z;q)_m = \frac{(z;q)_{\infty}}{(zq^m;q)_{\infty}} \qquad {}_2\phi_1\left(\frac{\alpha,\beta}{\gamma};q,z\right) = \sum_{n \ge 0} \frac{(\alpha;q)_n(\beta;q)_n}{(\gamma;q)_n(q;q)_n} z^n$$

 \square *R*⁰⁰⁰ also satisfies the *RRRR* type tetrahedron equation:

 $R_{124}^{OOO} R_{135}^{OOO} R_{236}^{OOO} R_{456}^{OOO} = R_{456}^{OOO} R_{236}^{OOO} R_{135}^{OOO} R_{124}^{OOO}$ $\boxed{\text{Thm:}} [\text{Kapranov-Voevodsky'94}]$ $\boxed{R^{OOO}} = \text{intertwiner of irreps of quantum coordinate ring } A_q(A_2)$ $R^{OOO} \circ (\pi_1 \otimes \pi_2 \otimes \pi_1(\Delta^{\text{op}}(g))) = (\pi_2 \otimes \pi_1 \otimes \pi_2(\Delta(g))) \circ R^{OOO} \quad \forall g \in A_q(A_2)$

q-Weyl algebra

- <u>Summary of [Bazhanov-Sergeev'06]</u>:
- □ We can obtain both *RLLL* & *RRRR* type tetrahedron equations.
- □ Obtained R^{000} is characterized as intertwiner of $A_q(A_2)$.
- <u>Aim</u>: Generalization of [Bazhanov-Sergeev'06]
- <u>Our approach</u>: *q*-Oscillator algebra \rightarrow *q*-Weyl algebra ■ Parametric generalization of L^0 by an embedding $O_q \hookrightarrow W_q$:

$$\mathbf{k} \mapsto X, \quad \mathbf{a}^+ \mapsto Z, \quad \mathbf{a}^- \mapsto Z^{-1}(1 - X^2)$$

- q-Weyl algebra W_q
 - **Generators**: $X^{\pm 1}$, $Z^{\pm 1}$
 - **\square** Relations: XZ = qZX
 - **D** Representations π_X , π_Z on $F = \bigoplus_{m \in \mathbb{Z}} \mathbb{C} | m \rangle$:

 $\begin{aligned} \pi_X : X \ket{m} &= q^m \ket{m}, \quad Z \ket{m} &= \ket{m+1} \quad \text{(coordinate rep)} \\ \pi_Z : X \ket{m} &= \ket{m-1}, \quad Z \ket{m} &= q^m \ket{m} \quad \text{(momentum rep)} \end{aligned}$

q-Weyl algebra valued six vertex model 7/15

■ *L*-operators L^A (A = X, Z, O) [Kuniba-Matsuike-Y'22] ■ $L^A \in \text{End}(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes F)$ (A = X, Z) ■ $L^O \in \text{End}(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes F_+)$

<u>Remark</u>: <u>L^X</u> for (r, s, t, w) = (1,1, μ⁻¹, μ²) corresponds to L⁰ via the pullback. <u>L^Z</u> doesn't have such a correspondence and behaves differently from L⁰.

Main result

ABC	feature	$\begin{array}{c} \operatorname{locally} \\ \operatorname{finiteness} \end{array}$
$\mathbf{Z}\mathbf{Z}\mathbf{Z}$	factorized	no
OZZ	$_2\phi_1$	no
ZZO	$_2\phi_1$	no
ZOZ	$_{3}\phi_{2}$ -like	no
OOZ	factorized	yes
ZOO	factorized	yes
OZO	factorized	no
000	$_2\phi_1$	yes
$\mathbf{X}\mathbf{X}\mathbf{Z}$	factorized	no
$\mathbf{Z}\mathbf{X}\mathbf{X}$	factorized	no
XZX	factorized	no

- For all cases, *R*^{ABC} are uniquely determined in each disjoint set of reccurence equations specified by appropriate parity conditions.
- We obtained the explicit formulae for them, where their matrix elements are either factorized or expressed as q-hypergeometric series.

Examples of *RLLL* relation for *ZZZ*:

$$\begin{split} R(1 \otimes X \otimes X) &= (1 \otimes X \otimes X)R, \quad R(X \otimes X \otimes 1) = (X \otimes X \otimes 1)R, \\ -r_1 r_3 R(1 \otimes Z \otimes 1) &= (qt_1 t_3 w_1 X \otimes Z \otimes X - r_2 Z \otimes 1 \otimes Z)R, \\ R(-qt_1 t_3 w_3 X \otimes Z \otimes X + s_2 Z \otimes 1 \otimes Z) &= s_1 s_3 (1 \otimes Z \otimes 1)R, \\ t_1 R(X \otimes Z \otimes Z^{-1} (r_3 s_3 - t_3^2 w_3 X^2) + s_2 t_3 Z \otimes 1 \otimes X) &= s_3 t_2 (Z \otimes X \otimes 1)R, \\ R(t_3 w_3 Z^{-1} (r_1 s_1 - t_1^2 w_1 X^2) \otimes Z \otimes X + s_2 t_1 w_1 X \otimes 1 \otimes Z) &= s_1 t_2 w_2 (1 \otimes X \otimes Z)R. \\ \pi_Z : X |m\rangle &= |m-1\rangle, \quad Z |m\rangle = q^m |m\rangle \end{split}$$

Writing down actions of π_Z , we obtain recursion relations for R^{ZZZ} :

$$\begin{split} R^{a,b,c}_{i,j-1,k-1} &= R^{a,b+1,c+1}_{i,j,k}, \quad R^{a,b,c}_{i-1,j-1,k} = R^{a+1,b+1,c}_{i,j,k}, \\ (q^{a+c}r_2 - q^jr_1r_3)R^{a,b,c}_{i,j,k} &= q^{1+b}t_1t_3w_1R^{a+1,b,c+1}_{i,j,k}, \\ (q^{i+k}s_2 - q^bs_1s_3)R^{a,b,c}_{i,j,k} &= q^{1+j}t_1t_3w_3R^{a,b,c}_{i-1,j,k-1}, \\ q^jr_3s_3t_1R^{a,b,c}_{i-1,j,k} - q^{j+2}t_1t_3^2w_3R^{a,b,c}_{i-1,j,k-2} + q^{i+k}s_2t_3R^{a,b,c}_{i,j,k-1} &= q^{a+k}s_3t_2R^{a,b+1,c}_{i,j,k}, \\ q^jr_1s_1t_3w_3R^{a,b,c}_{i,j,k-1} - q^{j+2}t_1^2t_3w_1w_3R^{a,b,c}_{i-2,j,k-1} + q^{i+k}s_2t_1w_1R^{a,b,c}_{i-1,j,k} &= q^{c+i}s_1t_2w_2R^{a,b+1,c}_{i,j,k} \end{split}$$

Fact: Recursion relations for ZZZ consists of 4 disjoint sets, which are specified with the parity pair $(d_1, d_2) = (a + c - j, b - i - k)$.

Thm: [Kuniba-Matsuike-Y'22]

□ $R^{ZZZ} \in End(F^{\otimes 3})$ is uniquely determined in each sector and given by

Features:

- **\Box** The matrix elements of R^{ZZZ} are factorized.
- \square R^{ZZZ} is not locally finite.

There are 4 sectors specified with the parity pair (d_1, d_2) .

Thm: [Kuniba-Matsuike-Y'22] $\square R^{OZZ} \in End(F_+ \otimes F \otimes F)$ is uniquely determined and given by

$$\begin{aligned} R_{i,j,k}^{a,b,c} &= \theta(i \ge 0) \left(\frac{r_2}{r_3}\right)^a \left(\frac{s_3}{s_2}\right)^i \left(\frac{t_2 w_2}{\mu s_2}\right)^{-b+j} \left(-\frac{\mu t_3}{r_3}\right)^{-c+k} \frac{(z;q^2)_a}{(q^2;q^2)_a} q^{(a-b+j-1)c-(i-b+j-1)k-aj+bi} \\ &\times {}_2\phi_1 \left(\frac{q^{-2i}, z^{-1}q^2}{z^{-1}q^{-2a+2}}; q^2, yq^{2i+2j-2a-2b}\right). \end{aligned}$$

$$\mu = \mu_4, \quad y = rac{r_3 w_3}{\mu^2 s_3}, \quad z = q^{2k - 2c + 2} rac{\mu^2 s_2}{r_2 w_2}$$

Features:

The matrix elements of R^{OZZ} are expressed as q-hypergeometric series.

- \square R^{OZZ} is not locally finite.
- □ There is only 1 sector.

Thm: [Kuniba-Matsuike-Y'22] $R^{OOZ} \in End(F_+ \otimes F_+ \otimes F)$ is uniquely determined and non-trivial iff $\mu_1 / \mu_2 = q^d$ for $d \in \mathbb{Z}$. In that case, it is given by

$$\begin{aligned} R(d)_{i,j,k}^{a,b,c} &= \theta(e \in \mathbb{Z})\theta(\min(i,j) \ge 0)\delta_{i+j}^{a+b} \qquad a,b,i,j \in \mathbb{Z}_{\ge 0}, \ c,k \in \mathbb{Z} \\ &\times s_3^i(\mu_2 t_3)^{-a} \left(\frac{\mu_2 s_3}{t_3 w_3}\right)^j \left(\frac{t_3^2 w_3}{r_3 s_3}\right)^e q^{cj-bk} \frac{(q^{2+2e-2j};q^2)_j(q^{2a+2};q^2)_{i-a}}{(q^2;q^2)_f(q^{2a-2e};q^2)_{e-a}} \\ &e = \frac{1}{2}(a-c+j+k+d), \quad f = \frac{1}{2}(b+c+i-k-d) \end{aligned}$$

Features:

\Box The matrix elements of R^{OOZ} are factorized.

 $\square R^{OOZ}$ is locally finite.

There is only 1 sector but R^{OOZ} is non-trivial if the parity of 2*e* is even.

From associativity, we can expect the RRRR equations holds:

 $R_{124}^{ABD}R_{135}^{ACE}R_{236}^{BCF}R_{456}^{DEF} = R_{456}^{DEF}R_{236}^{BCF}R_{135}^{ACE}R_{124}^{ABD}$

 $A, B, C, D, E, F \in \{X, Z, O\}$

<u>Conjecture</u>: [Kuniba-Matsuike-Y'22]

At least, the following RRRR equations are valid:

$$\begin{split} R^{OOO}_{456} R^{OOO}_{236} R^{ZOO}_{135} R^{ZOO}_{124} &= R^{ZOO}_{124} R^{ZOO}_{135} R^{OOO}_{236} R^{OOO}_{456} \\ R^{ZOO}_{456} R^{OOO}_{236} R^{OOO}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOO}_{135} R^{OOO}_{236} R^{ZOO}_{456} \\ R^{OOZ}_{456} R^{OOZ}_{236} R^{OOO}_{135} R^{OOO}_{124} &= R^{OOO}_{124} R^{OOO}_{135} R^{OOZ}_{236} R^{OOZ}_{456} \\ R^{OOZ}_{456} R^{OOZ}_{236} R^{OOO}_{135} R^{ZOO}_{124} &= R^{ZOO}_{124} R^{ZOO}_{135} R^{OOZ}_{236} R^{OOZ}_{456} \\ R^{OOZ}_{456} R^{OOZ}_{236} R^{OOO}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{OOO}_{135} R^{ZOO}_{236} R^{OOO}_{456} \\ R^{OOO}_{456} R^{ZOO}_{236} R^{OOZ}_{135} R^{OOO}_{124} &= R^{OZO}_{124} R^{OOZ}_{135} R^{OOO}_{236} R^{OZO}_{456} \\ R^{OOO}_{456} R^{ZOO}_{236} R^{OZO}_{135} R^{ZOO}_{124} &= R^{ZOO}_{124} R^{ZOO}_{135} R^{OOO}_{236} R^{OOO}_{456} \\ R^{ZOO}_{456} R^{ZOO}_{236} R^{ZOO}_{135} R^{ZOZ}_{124} &= R^{ZOZ}_{124} R^{ZOO}_{135} R^{ZOO}_{236} R^{ZOO}_{456} \\ R^{ZOO}_{456} R^{ZOO}_{236} R^{OOZ}_{135} R^{OZZ}_{124} &= R^{ZOZ}_{124} R^{OOO}_{135} R^{ZOO}_{236} R^{ZOO}_{456} \\ R^{ZOO}_{456} R^{ZOO}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOO}_{135} R^{ZOO}_{236} R^{ZOO}_{456} \\ R^{ZOO}_{456} R^{ZOO}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOO}_{236} R^{ZOO}_{456} \\ R^{ZOO}_{456} R^{OOZ}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOO}_{236} R^{ZOZ}_{456} \\ R^{ZOO}_{456} R^{OOZ}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOZ}_{236} R^{ZOZ}_{456} \\ R^{A56}_{456} R^{200}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOZ}_{236} R^{AZOZ}_{456} \\ R^{OZZ}_{456} R^{OOZ}_{236} R^{OOZ}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOZ}_{236} R^{AZOZ}_{456} \\ R^{ZOO}_{236} R^{ZOO}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OOZ}_{135} R^{OOZ}_{236} R^{AZOZ}_{456} \\ R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOO}_{135} R^{OOZ}_{236} R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOZ}_{236} R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOO}_{236} R^{ZOO}_{236}$$

$$\begin{split} R^{OOO}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OZO}_{124} &= R^{OOO}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{OOO}_{456} \\ R^{OOO}_{456} R^{OZO}_{236} R^{ZZO}_{135} R^{ZOO}_{124} &= R^{ZOO}_{124} R^{ZZO}_{135} R^{ZOO}_{236} R^{OOO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{ZOO}_{124} &= R^{ZOO}_{124} R^{ZOZ}_{135} R^{OOO}_{236} R^{OZO}_{456} \\ R^{OOO}_{456} R^{ZZO}_{236} R^{OZO}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{OZO}_{135} R^{ZZO}_{236} R^{OOO}_{456} \\ R^{OOO}_{456} R^{ZZO}_{236} R^{OZO}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{OZO}_{135} R^{ZZO}_{236} R^{OOZ}_{456} \\ R^{OOZ}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{OZO}_{135} R^{ZOZ}_{236} R^{OZO}_{456} \\ R^{ZOO}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OOZ}_{124} &= R^{OOZ}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{ZOO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OOO}_{124} &= R^{OOO}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{AZO}_{456} \\ R^{OOZ}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OOO}_{124} &= R^{OOO}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{OZO}_{135} R^{OZO}_{124} &= R^{OOO}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{OZO}_{124} &= R^{OOO}_{124} R^{OZO}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{OZO}_{124} &= R^{OOO}_{124} R^{ZZZ}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{ZZZ}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OOZ}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{ZZZ}_{135} R^{OZO}_{236} R^{OZO}_{456} \\ R^{OZO}_{456} R^{OZO}_{236} R^{ZZZ}_{135} R^{OZO}_{124} &= R^{OZO}_{124} R^{ZZZ}_{135} R^{OZO}_{236} R^{AZO}_{456} \\ R^{OZO}_{236} R^{ZZZ}_{236} R^{OZO}_{135} R^{OZO}_{236} R^{OZO}$$

<u>Rermark</u>: Each equation is checked for over 10000 outer lines by computer.

Proposition: [Kuniba-Matsuike-Y'22]

■ $R^{ZZZ} \in \text{End}(F^{\otimes 3})$ satisfies the following intertwining relation of the quantum coordinate ring $A_q(A_2)$:

$$R^{ZZZ} \circ (\pi_1 \otimes \pi_2 \otimes \pi_1(\Delta^{\mathrm{op}}(g))) = (\pi_2 \otimes \pi_1 \otimes \pi_2(\Delta(g))) \circ R^{ZZZ} \quad ^\forall g \in A_q(A_2)$$

 $\square \pi_i = \pi_Z \circ \varrho_i$, where ϱ_1 and ϱ_2 are respectively given by t_{ij} : generators of $A_q(A_2)$

$$\begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{pmatrix} \mapsto \begin{pmatrix} Z^{-1}(u_1 - g_1 h_1 X^2) & g_1 X & 0 \\ -qh_1 X & Z & 0 \\ 0 & 0 & u_1^{-1} \end{pmatrix}, \begin{pmatrix} u_2^{-1} & 0 & 0 \\ 0 & Z^{-1}(u_2 - g_2 h_2 X^2) & g_2 X \\ 0 & -qh_2 X & Z \end{pmatrix}$$

□ π_i s are **not** irreducible. $\pi_Z : X |m\rangle = |m-1\rangle$, $Z |m\rangle = q^m |m\rangle$ □ Identification of parameters is done as follows:

$$u_1 = u_2(=:u) \qquad g_1h_1 = g_2h_2(=:p)$$

$$\frac{r_1}{t_1} = \frac{r_2}{t_2}, \quad \frac{s_2}{t_2} = \frac{s_3}{t_3}, \quad \frac{r_2}{r_1r_3} = u, \quad \frac{s_1s_3}{s_2} = u^2, \quad \frac{t_1^2w_1}{r_1s_1} = \frac{t_2^2w_2}{r_2s_2} = \frac{t_3^2w_3}{r_3s_3} = \frac{p}{u}.$$

<u>Summary</u>:

- \square We considered three kinds of L-operators L^X , L^Z , L^O and RLLL relations which they satisfy. They can be regarded as q-Oscillator or q-Weyl algebra valued six vertex models.
- \Box We solved these *RLLL* relations and obtained explicit formulae for R^{ABC} .
- \Box For all cases, R^{ABC} are uniquely determined in each disjoint set of reccurence equations specified by appropriate parity conditions.
- Their matrix elements are either factorized or expressed as qhypergeometric series.
- \square By computer experiments, we conjectured *RRRR* equations for R^{ABC} .
- \square We found R^{ZZZ} satisfies an intertwining relation for *reducible* representations of $A_a(A_2)$.

Outlook:

- Root of unity, Bazhanov-Baxter model: F, F₊ become finite dimensional
- **D** Boundary integrability in 3D: K(LGLG) = (GLGL)K
- Reduction to 2D, generalized chiral Potts model
- Characterization in terms of PBW bases of U_a^+ $e_2^{(a)}e_{12}^{(b)}e_1^{(c)} = \sum_{i,j,k \in \mathbb{Z}} (R^{OOO})_{i,j,k}^{a,b,c} e_1^{(k)}e_{21}^{(j)}$