Tetrahedron and 3D reflection equation from PBW bases of the nilpotent subalgebra of quantum superalgebras

Mathematical Society of Japan Spring Meeting Keio University@2021/03/17

Akihito Yoneyama
Institute of Physics, University of Tokyo, Komaba

Based on: AY, arXiv: 2012.13385

Tetrahedron equation (TE)

- 3D analog of Yang-Baxter equation (YBE)

$$
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124}
$$

■ Several solutions are known although less systematically than YBE.

- Family of Zamolodchikov model: Zamolodchikov (81), Bazhanov-Baxter (92)
- Product of solution to YBE: Carter-Saito (96)
- Interwtiner for quantum coordinate ring $A_{q}\left(A_{2}\right)$: Kapranov-Voevodsky (94) $=$ Transition matrix of PBW bases of quantum group $U_{q}^{+}\left(A_{2}\right)$: Sergeev (07)
\square solution to local YBE by ansatz: Bazhanov-Sergeev (06)

Two solutions on Fock spaces: 3DR \& 3DL

■ Fock spaces: $F=\bigoplus_{m=0,1,2, \ldots} \mathbb{C}|m\rangle$ and $V=\bigoplus_{m=0,1} \mathbb{C} u_{m}$
■ 3DR = transition matrix of PBW bases of quantum group $U_{q}^{+}\left(A_{2}\right)$
$\square \mathcal{R} \in \operatorname{End}\left(F^{\otimes 3}\right)$
$\square \mathcal{R}|i\rangle \otimes|j\rangle \otimes|k\rangle=\sum_{a, b, c} \mathcal{R}_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle$
\square

$$
\mathcal{R}_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \frac{\left(q^{2}\right)_{c+\mu}}{\left(q^{2}\right)_{c}}\binom{i}{\mu}_{q^{2}}\binom{j}{\lambda}_{q^{2}}
$$

$\square \mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124}$

- 3DL $=$ solution to local YBE by ansatz
$\square \mathcal{L} \in \operatorname{End}(V \otimes V \otimes F)$
$\square \mathcal{L}\left(u_{i} \otimes u_{j} \otimes|k\rangle\right)=\sum \mathcal{L}_{i, j, k}^{a, b, c} u_{a} \otimes u_{b} \otimes|c\rangle$
\square

$$
\begin{aligned}
& \mathcal{L}_{0,0, k}^{0,0, c}=\mathcal{L}_{1,1, k}^{1,1, c}=\delta_{k, c}, \quad \mathcal{L}_{0,1, k}^{0,1, c}=-\delta_{k, c} q^{k+1}, \quad \mathcal{L}_{1,0, k}^{1,0, c}=\delta_{k, c} q^{k}, \\
& \mathcal{L}_{1,0, k}^{0,1, c}=\delta_{k-1, c}\left(1-q^{2 k}\right), \quad \mathcal{L}_{0,1, k}^{1,0, c}=\delta_{k+1, c}
\end{aligned}
$$

$\square \mathcal{L}_{124} \mathcal{L}_{135} \mathcal{L}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{L}_{236} \mathcal{L}_{135} \mathcal{L}_{124} \quad \mathcal{R}: 3 \mathrm{DR}$

Aim \& Motivation

- Aim: Find a parallel origin for 3DR and 3DL
- Motivation:
- Generally, infinitely many solutions to YBE are obtained from one solution to TE.
- For 3DR and 3DL, we can obtain R matrices with spectral parameters.
- They are identified with R matrices associated with some quantum affine algebras $U_{q}(\hat{g})$.

Solution to TE	Solution to YBE
3 DR	$U_{q}\left(A_{n-1}^{(1)}\right)$, symmetric tensor rep.
3 DL	$U_{q}\left(A_{n-1}^{(1)}\right)$, fundamental rep.

c.f. Kuniba-Okado-Sergeev (15)

Main result for TE (1/2)

■ Theorem [Y20]:

- Transition matrices of PBW bases of the nilpotent subalgebra of quantum superalgebras of type A of rank 2 are given as follows:

Dynkin diagram	Transition matrix
$\bigcirc-\bigcirc$	3DR
$\bigcirc-\otimes-\bigcirc$	3DL
$\otimes-\otimes$	3DN

$$
s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
$$

- Here, 3 DN is a new object as $\mathcal{N} \in \operatorname{End}(V \otimes F \otimes V)$
\square By constructing transition matrices for rank 3 in two ways, we obtain several solutions to TE, which 3DR, L and N satisfy.

Main result for TE (2/2)

- For \bigcirc - \bigcirc - Q

$$
\mathcal{L}_{123} \mathcal{L}_{145} \mathcal{L}_{246} \mathcal{R}_{356}=\mathcal{R}_{356} \mathcal{L}_{246} \mathcal{L}_{145} \mathcal{L}_{123}
$$

- Sketch of Proof:

$$
\begin{aligned}
& \underline{e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}} \\
& e_{i}: \text { generator of } U_{q} \\
& =\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} \underline{e}_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{L}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} e_{2}^{\left(x_{3}\right)} \underline{e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)}} \underline{e_{3(12)}^{\left(x_{4}\right)}} \underline{e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)}} \\
& =\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{L}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{32}^{\left(x_{2}\right)} e_{1(32)}^{\left(x_{4}\right)} e_{1}^{\left(o_{6}\right)} e_{3}^{\left(i_{1}\right)} \\
& =\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{L}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{L}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \underline{e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{1}^{\left(x_{6}\right)} e_{321}^{\left(i_{4}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)} .{ }^{\left(x_{2}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{L}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{L}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \mathcal{R}_{i_{3}, i_{5}, i_{6}}^{x_{3}, x_{5}, x_{6}} e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}
\end{aligned}
$$

- For

$$
\mathcal{N}\left(q^{-1}\right)_{123} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{R}_{246} \mathcal{L}_{356}=\mathcal{L}_{356} \mathcal{R}_{246} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{N}\left(q^{-1}\right)_{123}
$$

3D reflection equation (3DRE)

■ Boundary analog of TE proposed by Isaev-Kulish (97)
$\mathcal{R}_{489} \mathcal{J}_{3579} \mathcal{R}_{269} \mathcal{R}_{258} \mathcal{J}_{1678} \mathcal{J}_{1234} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{J}_{1234} \mathcal{J}_{1678} \mathcal{R}_{258} \mathcal{R}_{269} \mathcal{J}_{3579} \mathcal{R}_{489}$

- Only two solutions are known.
- Interwtiner of quantum coordinate ring $A_{q}\left(B_{2}\right)$ or $A_{q}\left(C_{2}\right)$ $=$ Transition matrix of PBW bases of quantum group $U_{q}\left(B_{2}\right)$ or $U_{q}\left(C_{2}\right)$ Kuniba-Okado (12, 13), Kuniba-Okado-Yamada (13)

Main result for 3DRE

■ Theorem [Y20]:

- Transition matrices of PBW bases of the nilpotent subalgebra of quantum superalgebras of type B of rank 2 are given as follows:

Dynkin diagram	Transition matrix	Space
$\bigcirc \Longrightarrow \bigcirc$	3DJ	$F^{\otimes 4}$
$\otimes \Longrightarrow \bigcirc$	3DX (new)	$F \otimes V \otimes F \otimes V$
$\otimes \Longrightarrow$	3DY (new)	$F \otimes V \otimes F \otimes V$
$\bigcirc \Longrightarrow$	3DZ (new)	$F^{\otimes 4}$

- We obtained explicit formulae for 3DX and 3DY.
- Any matrix elements for 3DZ can be calculated by recurrence equations.
- The following cases give new solutions to 3DRE.

$$
\begin{aligned}
& \mathcal{L}_{456} \mathcal{N}\left(q^{-1}\right)_{489} \mathcal{Y}\left(q^{-1}\right)_{3579} \mathcal{N}\left(q^{-1}\right)_{269} \mathcal{L}_{258} \mathcal{J}_{1678} \mathcal{X}_{1234} \\
& =X_{1234} \mathcal{J}_{1678} \mathcal{L}_{258} \mathcal{N}\left(q^{-1}\right)_{269} \mathcal{Y}\left(q^{-1}\right)_{3579} \mathcal{N}\left(q^{-1}\right)_{489} \mathcal{L}_{456}
\end{aligned}
$$

Concluding remarks

- Remark:
- The crystal limit for obtained transition matrices gives a super analog of transition maps of Lusztig's parametrizations of the canonical basis of U_{q}.
- Proposition [Y20]:
$\square \mathcal{L}_{i, j, k}^{a, b, c}=\lim _{q \rightarrow 0} \mathcal{L}(q)_{i, j, k}^{a, b, c}$ gives a non-trivial bijection on $\{0,1\}^{2} \times \mathbb{Z}_{\geq 0}$.
\square Non-zero elements are given by

$$
\mathcal{L}_{0,0, k}^{0,0, c}=\mathcal{L}_{1,1, k}^{1,1, c}=\delta_{k, c}, \quad \mathcal{L}_{0,1, k}^{1,0, c}=\delta_{k+1, c}, \quad \mathcal{L}_{1,0,0}^{1,0,0}=1, \quad \mathcal{L}_{1,0, k}^{0,1, c}=\delta_{k-1, c}
$$

$\square \mathcal{N}_{i, j, k}^{a, b, c}=\lim _{q \rightarrow 0}\left(\frac{[b]_{q}!}{[j]_{q}!} \mathcal{N}(q)_{i, j, k}^{a, b, c}\right)$ also gives a non-trivial bijection.

- Summary:
\square The 3DL is characterized as the transition matrix for $\bigcirc-\otimes$.
- The 3DN is obtained as a new solution to the tetrahedron equation by considering the transition matrix for $\otimes-\otimes$.
- Outlook: Obtained transition matrices are characterized as intertwiners for quantum super coordinate rings?

