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Bulk Boundary

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

Integrability in 3D 2/9

◼

◼ Tetrahedron and 3D reflection equation are conditions for 
factorization of string scattering amplitude in 2+1D. 

◼ Tetrahedron equation ◼ 3D reflection equation

[Isaev-Kulish97][Zamolodchikov80]



Aim & Motivation 3/9

◼ Several tetrahedron maps are known although less systematically 
than Yang-Baxter maps.

 In the context of the local YBE

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐴2) and their geometric liftings

 By using some KP tau functions

◼ On the other hand, there are very few known 3D reflection maps.

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐵2) and 𝑈𝑞(𝐶2), and their geometric liftings

◼ Aim: Obtain 3D reflection maps from known tetrahedron maps

◼ Motivation:

 Some 2D reflection maps are constructed from known Yang-Baxter maps.

 A relation between (1) and (2) is known associated with folding the 
Dynkin diagram of 𝐴3 into one of 𝐵2.
→ Let’s generalize this!

[Sergeev98]

[Kuniba-Okado12]

[Kassotakis-Nieszporski-Papageorgiou-Tongas19]

[Kuniba-Okado12]

[Caudrelier-Zhang14], [Kuniba-Okado19]

[Berenstein-Zelevinsky01], [Lusztig11]



Tetrahedron maps

◼ Definition:

 Let 𝐑: 𝑋3 → 𝑋3 (𝑋: an arbitrary set) denote a map.

 We call 𝐑 tetrahedron map if it satisfies the tetrahedron equation on 𝑋6:

 We call 𝐓 the tetrahedral composite of the tetrahedron map 𝐑.

 We call 𝐑 involutive if 𝐑2 = id and symmetric if 𝐑123 = 𝐑321.

◼ Remark:

 For involutive and symmetric tetrahedron maps, (∗) corresponds to the 
usual tetrahedron equation.
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3D reflection maps 5/9

◼ Definition:
 Let J: 𝑋4 → 𝑋4 denote a map.

 We set a tetrahedron map by 𝐑:𝑋3 → 𝑋3.

 We call 𝐉 3D reflection map if it satisfies the 3D reflection equation on 𝑋9:



Boundarization

◼ We set the subset of 𝑋6 by 𝑌 = {(𝑥1, ⋯ , 𝑥6) ∣ 𝑥2 = 𝑥3, 𝑥5 = 𝑥6}.
 We set 𝜙: 𝑋4 → 𝑌 by                                                                  (embedding)

 We set 𝜑: 𝑌 → 𝑋4 by                                                                  (projection)

◼ Definition:

 Let 𝐑: 𝑋3 → 𝑋3 denote a tetrahedron map and 𝐓 its tetrahedral composite.

 We call 𝐑 boundarizable if the following condition is satisfied:

 In that case, we define the boundarization 𝐉: 𝑋4 → 𝑋4 of 𝐑 by
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Main theorem

◼ Theorem:

 Let 𝐑: 𝑋3 → 𝑋3 denote an involutive, symmetric and boundarizable
tetrahedron map, and 𝐉: 𝑋4 → 𝑋4 its boundarization.

 Then they satisfy 3D reflection equation.

◼ Sketch of Proof:

 Cut the following identiy on 𝑋15 into half:
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Example: birational transition map

◼ We set 𝐑:ℝ>0
3 → ℝ>0

3 by

 This map is characterized as the transition map of parametrizations of 
the positive part of 𝑆𝐿3:

 We can verify 𝐑 is the involutive, symmetric and boundarizable
tetrahedron map.

◼ The associated 3D reflection map J: ℝ>0
4 → ℝ>0

4 is calculated as:

 This map is exactly the transition map of parametrizations of the 
positive part of 𝑆𝑃4, which is a consequence from folding the Dynkin
diagram of 𝐴3 into one of 𝐶2.
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[Lusztig94]

[Berenstein-Zelevinsky01], [Lusztig11]



Concluding remarks

◼ Summary:

 We present a method for obtaining 3D reflection maps by using known 
tetrahedron maps, which is an analog of the results in 2D.

 Our method is a kind of generalization of the relation by Berenstein and 
Zelevinsky and gives 3D interpretation to their relation.

 By applying our method to known tetrahedron maps, we obtain several 
3D reflection maps which include new solutions.

◼ Remark:

 Our theorem can be extended to inhomogeneous cases, that is, the case 
tetrahedron maps are defined on direct product of different sets.
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