3D reflection maps from tetrahedron maps

Mathematical Society of Japan Autumn Meeting Chiba University@2021/09/14

Akihito Yoneyama
Institute of Physics, University of Tokyo, Komaba

Based on: AY, Math. Phys. Anal. Geom. 2421 (2021)

Integrability in 3D

- Tetrahedron equation
- 3D reflection equation

$$
\begin{aligned}
& \mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346} \\
& =\mathbf{R}_{346} \mathbf{R}_{126} \mathbf{R}_{135} \mathbf{R}_{245}
\end{aligned}
$$

[Zamolodchikov80]

$\mathbf{R}_{489} \mathbf{J}_{3579} \mathbf{R}_{269} \mathbf{R}_{258} \mathbf{J}_{1678} \mathbf{J}_{1234} \mathbf{R}_{456}$
$=\mathbf{R}_{456} \mathbf{J}_{1234} \mathbf{J}_{1678} \mathbf{R}_{258} \mathbf{R}_{269} \mathbf{J}_{3579} \mathbf{R}_{489}$ [Isaev-Kulish97]

- Tetrahedron and 3D reflection equation are conditions for factorization of string scattering amplitude in 2+1D.

	Bulk	Boundary
2D	Yang-Baxter eq.	Reflection eq.
3D	Tetrahedron eq.	3D Reflection eq.

Aim \& Motivation

■ Several tetrahedron maps are known although less systematically than Yang-Baxter maps.

- In the context of the local YBE [Sergeev98]
- Transition maps of Lusztig's parametrization of the canonical basis of $U_{q}\left(A_{2}\right)$ and their geometric lifting [Kuniba-Okado12]
\square By using some KP tau functions [Kassotakis-Nieszporski-Papageorgiou-Tongas19]
- On the other hand, there are very few known 3D reflection maps.
- Transition maps of Lusztig's parametrization of the canonical basis of $U_{q}\left(B_{2}\right)$ and $U_{q}\left(C_{2}\right)$, and their geometric lifting [Kuniba-Okado12]
- Aim: Obtain 3D reflection maps from known tetrahedron maps
- Motivation:
- Some 2D reflection maps are constructed from known Yang-Baxter maps. [Caudrelier-Zhang14], [Kuniba-Okado19]
\square A relation between (1) and (2) is known associated with folding the Dynkin diagram of A_{3} into one of B_{2}. [Berenstein-Zelevinsky01], [Lusztig11] \rightarrow Let's generalize this!

Tetrahedron maps

- Definition:
\square Let R: $X^{3} \rightarrow X^{3}(X:$ an arbitrary set) denote a map.
\square We call \mathbf{R} tetrahedron map if it satisfies the tetrahedron equation on X^{6} :

$$
\mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346}=\mathbf{R}_{346} \mathbf{R}_{126} \mathbf{R}_{135} \mathbf{R}_{245}\left(=: \mathbf{T}_{123456}\right) \quad \cdots(*)
$$

\square We call \mathbf{T} the tetrahedral composite of the tetrahedron map \mathbf{R}.
\square We call \mathbf{R} involutive if $\mathbf{R}^{2}=\mathrm{id}$ and symmetric if $\mathbf{R}_{123}=\mathbf{R}_{321}$.

- Remark:
\square For involutive and symmetric tetrahedron maps, (*) corresponds to the usual tetrahedron equation.

- Definition:

Let J: $X^{4} \rightarrow X^{4}$ denote a map.
\square We set a tetrahedron map by $\mathbf{R}: X^{3} \rightarrow X^{3}$.

- We call J 3D reflection map if it satisfies the 3D reflection equation on X^{9} :
$\mathbf{R}_{489} \mathbf{J}_{3579} \mathbf{R}_{269} \mathbf{R}_{258} \mathbf{J}_{1678} \mathbf{J}_{1234} \mathbf{R}_{456}=\mathbf{R}_{456} \mathbf{J}_{1234} \mathbf{J}_{1678} \mathbf{R}_{258} \mathbf{R}_{269} \mathbf{J}_{3579} \mathbf{R}_{489}$

Boundarization

■ We set the subset of X^{6} by $Y=\left\{\left(x_{1}, \cdots, x_{6}\right) \mid x_{2}=x_{3}, x_{5}=x_{6}\right\}$.
\square We set $\phi: X^{4} \rightarrow Y$ by $\phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{2}, x_{3}, x_{4}, x_{4}\right)$ (embedding)
\square We set $\varphi: Y \rightarrow X^{4}$ by $\varphi\left(x_{1}, x_{2}, x_{2}, x_{3}, x_{4}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ (projection)

- Definition:
\square Let $\mathbf{R}: X^{3} \rightarrow X^{3}$ denote a tetrahedron map and \mathbf{T} its tetrahedral composite.
\square We call \mathbf{R} boundarizable if the following condition is satisfied:

$$
x \in Y \Rightarrow \mathbf{T}(x) \in Y
$$

\square In that case, we define the boundarization $\mathbf{J}: X^{4} \rightarrow X^{4}$ of \mathbf{R} by

$$
\mathbf{J}(\mathbf{x})=\varphi(\mathbf{T}(\phi(\mathbf{x})))
$$

Main theorem

■ Theorem:

- Let R: $X^{3} \rightarrow X^{3}$ denote an involutive, symmetric and boundarizable tetrahedron map, and $\mathrm{J}: X^{4} \rightarrow X^{4}$ its boundarization.
\square Then they satisfy 3D reflection equation.
■ Sketch of Proof:
- Cut the following identiy on X^{15} into half:

Example: birational transition map

■ We set $\mathbf{R}: \mathbb{R}_{>0}^{3} \rightarrow \mathbb{R}_{>0}^{3}$ by

$$
\mathbf{R}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\tilde{x_{1}}, \tilde{x_{2}}, \tilde{x_{3}}\right)=\left(\frac{x_{1} x_{2}}{x_{1}+x_{3}}, x_{1}+x_{3}, \frac{x_{2} x_{3}}{x_{1}+x_{3}}\right)
$$

\square This map is characterized as the transition map of parametrizations of the positive part of $S L_{3}$:

$$
G_{1}\left(x_{3}\right) G_{2}\left(x_{2}\right) G_{1}\left(x_{1}\right)=G_{2}\left(\tilde{x_{1}}\right) G_{1}\left(\tilde{x_{2}}\right) G_{2}\left(\tilde{x_{3}}\right) \quad G_{i}(x)=1+x E_{i, i+1}
$$

\square We can verify \mathbf{R} is the involutive, symmetric and boundarizable tetrahedron map.

- The associated 3D reflection map J: $\mathbb{R}_{>0}^{4} \rightarrow \mathbb{R}_{>0}^{4}$ is calculated as:

$$
\begin{aligned}
& \mathbf{J}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(\frac{x_{1} x_{2}^{2} x_{3}}{y_{1}}, \frac{y_{1}}{y_{2}}, \frac{y_{2}^{2}}{y_{1}}, \frac{x_{2} x_{3} x_{4}}{y_{2}}\right) \\
& y_{1}=x_{1}\left(x_{2}+x_{4}\right)^{2}+x_{3} x_{4}^{2}, \quad y_{2}=x_{1}\left(x_{2}+x_{4}\right)+x_{3} x_{4}
\end{aligned}
$$

\square This map is exactly the transition map of parametrizations of the positive part of $S P_{4}$, which is a consequence from folding the Dynkin diagram of A_{3} into one of C_{2}.
[Berenstein-Zelevinsky01], [Lusztig11]

Concluding remarks

- Summary:
- We present a method for obtaining 3D reflection maps by using known tetrahedron maps, which is an analog of the results in 2D.
\square Our method is a kind of generalization of the relation by Berenstein and Zelevinsky and gives 3D interpretation to their relation.
- By applying our method to known tetrahedron maps, we obtain several 3D reflection maps which include new solutions.
- Remark:
- Our theorem can be extended to inhomogeneous cases, that is, the case tetrahedron maps are defined on direct product of different sets.

