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Yang-Baxter equation

◼ Matrix equation on 𝑉1 ⊗𝑉2 ⊗𝑉3 (𝑉𝑖 : linear space)

 𝑅𝑖𝑗(𝑧) acts non-trivially only on 𝑉𝑖 ⊗𝑉𝑗.

 Solutions to the Yang-Baxter eq are called 𝑅 matrices.

◼ 𝑅 matrices are systematically (infinitely many) constructed via 
irreps of quantum affine algebra 𝑈𝑞(𝑔).
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◼ Monodromy matrix 𝑇𝑎0 𝑧 : 𝑉𝑎 ⊗𝑉0 → 𝑉𝑎 ⊗𝑉0

◼ By repeated uses of the Yang-Baxter equation, we have

Monodromy matrix & RTT relation 4/68

𝐿

𝑉0 = 𝑉⊗𝐿 : physical sp.

𝑉𝑎 : auxiliary sp.



Commuting transfer matrix

◼ Multiply 𝑅𝑎𝑏 𝑥𝑦−1 −1 from the left: 

◼ By taking the trace on 𝑉𝑎 ⊗𝑉𝑏, we have

 Here we set the row-to-row transfer matrix by

◼ A lot of families of integrable one-dimensional quantum spin 
chains are constructed via commutativty of the transfer matrix.

 The transfer matrix gives 𝑂 𝐿 conserved quantities.

 Eigenvalues are obtained by the Bethe ansatz.
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Tetrahedron equation

◼ Matrix equation on 𝑉1 ⊗⋯⊗𝑉6 (𝑉𝑖 : linear space)

 𝑅𝑖𝑗𝑘 acts non-trivially only on 𝑉𝑖 ⊗𝑉𝑗 ⊗𝑉𝑘.

 Tetrahedron equation =  Yang-Baxter equation up to conjugation

◼ Unlike Yang-Baxter equation, a few families of solutions are known.

◼ We focus on solutions on the Fock spaces.
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boson Fock:

fermi Fock:



Solutions to tetrahedron equation: 3D R

◼ Set                        by

Here

◼ The 3D R satisfies the following tetrahedron equation:

◼ 3D R = intertwiner of irreps of quantum coordinate ring 𝐴𝑞(𝐴2)

 ``121” and ``212” are associated with the longest element of Weyl group.

 This gives a linearization method for tetrahedron equation.
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[Kapranov-Voevodsky94]



Solutions to tetrahedron equation: 3D L

◼ Set                                 by

◼ The 3D L satisfies

◼ BS obtained the 3D L by ansatz so that the tetrahedron equation 
of (∗) type has a non-trivial solution, and solved (∗) for the 3D R.

 Later, (∗) is ``identified” with the intertwining relations for 𝐴𝑞 𝐴2 .

 Algebraic origins of the 3D L has been still unclear.

◼ Recently, the classical limit of (∗) is derived in relation to non-
trivial transformations of a plabic network, which can be 
interpreted as cluster mutations.
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[Bazhanov-Sergeev06]

[Kuniba-Okado12]

[Gavrylenko-Semenyakin-Zenkevich20]



Monodromy matrices 9/68

◼ The 3D R and L satisfy the following weight conservation:

 Here, 𝐡1 = 𝐡⊗ 1⊗ 1 etc. and                         ,                      .

◼ The discussion below holds for solutions satisfying (∗).

◼ We use the following graphical notations:



STT=TTS: Commuting transfer matrix

◼ The above equation is obtained by repreated use of
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STT=TTS: Commuting transfer matrix

◼ Multiply 𝑥𝐡, 𝑦𝐡, 𝑢𝐡, 𝑣𝐡 by several spaces:
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STT=TTS: Commuting transfer matrix

◼ Use the weight conservation
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STT=TTS: Commuting transfer matrix

◼ Move (𝑢/𝑥)𝐡 and (𝑦/𝑣)𝐡 to the right hand side: 
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STT=TTS: Commuting transfer matrix

◼ Take the trace the auxiliary space: 
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STT=TTS: Commuting transfer matrix

◼ Note that the following parts are actually same matrices: 

◼ Then, if the above matrix is invertible, we can verify the 
commutativity by taking the trace on all auxiliary spaces.
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STT=TTS: Commuting transfer matrix 16/68

◼ Define the transfer matrix by

◼ This satisfies the following commutativity:

◼ This is often called the layer-to-layer transfer matrix.

[Sergeev06]



Comparing RTT relations in 2D and 3D

◼ 1 + 1 + 0 dimension in 2D

◼ 2 + 2 + 1 dimension in 3D
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RSSS=SSSR: Reduction to Yang-Baxter eq 18/68

◼ 1 + 1 + 1 + 0 dimension in 3D

◼ The above equation is obtained by repreated use of



RSSS=SSSR: Reduction to Yang-Baxter eq 19/68

◼ Multiply 𝑥𝐡4(𝑥𝑦)𝐡5𝑦𝐡6:



RSSS=SSSR: Reduction to Yang-Baxter eq 20/68

◼ Use the weight conservation                                :

◼ This gives the following identity:



RSSS=SSSR: Reduction to Yang-Baxter eq 21/68

◼ From this identity, we can obtain solutions to Yang-Baxter eq by

1. multiplying ℛ456
−1 and taking the trace on the spaces 456.

2. sandwiching between                              and                                .

◼ Here, we use properties for the 3D R:

1. The 3D R is invertible.

2. The 3D R has two eigenvectors with eigenvalues = 1 given by

Here



Matrix product solution to Yang-Baxter eq22/68

◼ These solutions are characterized as the 𝑅 matrices associated 
with some quantum affine algebras.

◼ Moreover, by mixing uses of the 3D R & L, we also obtain the 𝑅
matrices associated with generalized quantum groups.

𝑹𝐭𝐫(𝒛) 𝑹(𝒓,𝒓′)(𝒛)

𝑈𝑞(𝐴𝑛−1
(1)

)

symmetric tensor rep.

𝑈𝑞(𝐷𝑛+1
(2)

), 𝑈𝑞(𝐴2𝑛
(2)
), 𝑈𝑞(𝐶𝑛

(1)
)

Fock rep.

𝑈𝑞(𝐴𝑛−1
(1)

)

fundamental rep.

𝑈𝑞(𝐷𝑛+1
(2)

), 𝑈𝑞(𝐵𝑛
(1)
), 𝑈𝑞(𝐷𝑛

(1)
)

spin rep.

[Kuniba-Okado-Sergeev15]

= 3D R

= 3D L



Rank-Size duality

◼ We consider the following transfer matrix where        are the 3D L.

◼ Let us consider projections from two directions (1) & (2).

 Both of them give the row-to-row transfer matrix in two dimension.

 This suggest the spectral duality between 𝑠𝑙(𝑚) spin chain of size 𝑛 and 
𝑠𝑙(𝑛) spin chain of size 𝑚.

◼ The duality also appears in the context of the five-dimensional 
gauge theory.
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(1)

(2)

[Bazhanov-Sergeev06]

[Mironov-Morozov-Runov-Zenkevich-Zotov13]



Motivation & KOY theorem

◼ Motivation

 Why do the 3D R & L lead to such similar results, although they have 
totally different origins?

◼ We study transition matrices of PBW bases of 𝑈𝑞
+ 𝑠𝑙(𝑚|𝑛)

motivated by the KOY theorem which holds for non-super cases.

◼ Theorem [Kuniba-Okado-Yamada13] (Rough Statement)

 𝑔: arbitrary finite-dimensional simple Lie algebra

 Φ: intertwiner of irreducible representations of 𝐴𝑞(𝑔)

 𝛾: transition matrix of PBW bases of the nilpotent subalgebra of 𝑈𝑞(𝑔)

 Then, we have Φ = 𝛾.

◼ For                , the 3D R gives the transition matrix for 𝑈𝑞(𝐴2).

◼ One of our result is that the 3D L is exactly the transition matrix 
for the quantum superalgebra associated with                .
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◼ Setup: PBW bases of quantum superalgebras of type A

◼





◼
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Root system of Lie superalgebras 𝑠𝑙(𝑚|𝑛)

◼ Setup

 Weight lattice:

 Parity:                                         for

 We set                                                               .

◼ Lie superalgebra 𝑠𝑙(𝑚|𝑛)
 Rank: 𝑟 = 𝑚 + 𝑛 − 1

 Simple roots: Π = {𝛼1, ⋯ , 𝛼𝑟}, 𝛼𝑖 = ҧ𝜖𝑖 − ҧ𝜖𝑖+1
 Reduced positive roots:

 Even & odd parts:
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Cartan matrix and Dynkin diagram

◼ Cartan matrix for Lie superalgebra 𝑠𝑙(𝑚|𝑛)

 𝑑𝛼 = (𝛼, 𝛼)/2 for                 , 𝑑𝛼 = 1 for

 𝐷 = diag 𝑑1, ⋯ , 𝑑𝑟 , 𝑑𝑖= 𝑑𝛼𝑖
 Cartan matrix: 𝐴 = 𝑎𝑖𝑗 𝑖,𝑗∈𝐼

, 𝑎𝑖𝑗 = (𝛼𝑖 , 𝛼𝑗)/𝑑𝑖

 Simple coroots: ℎ𝑖 𝑖∈𝐼, 𝛼𝑗 ℎ𝑖 = 𝑎𝑖𝑗

◼ Dynkin diagram for Cartan data (𝐴, 𝑝)

 Prepare 𝑟 dots and decorate the 𝑖-th dot by 

 Connect them if 𝑎𝑖𝑗 ≠ 0 (𝑖 ≠ 𝑗):

◼ Remark

 Dynkin diagrams do not correspond to Lie superalgebras themselves.
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Quantum superalgebra 𝑈𝑞(𝑠𝑙(𝑚|𝑛))

◼ 𝑈𝑞(𝑠𝑙(𝑚|𝑛)): quantum superalgebras associated with (𝐴, 𝑝)

 Generators:

 We use             .

 Part of relations:
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Nilpotent subalgebra 𝑈𝑞
+(𝑠𝑙(𝑚|𝑛))

◼ 𝑈𝑞
+(𝑠𝑙(𝑚|𝑛)): nilpotent subalgebra generated by 𝑒𝑖 𝑖∈𝐼

 Root space decomposition:

 𝑞-commutator: 

◼ Rest of relations:

1. For                                            :

2. For :

3. For :

4. {𝑓𝑖}𝑖∈𝐼 satisfies same relations as (1)~(3).

◼ Remark

 For 𝑎𝑖𝑖 = 0 and 𝛼𝑖 ∈ ෩Φiso
+ , we have 𝑒𝑖

2 = 0 from (2).
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PBW bases of 𝑈𝑞
+(𝑠𝑙(𝑚|𝑛))

◼ We define two partial orders 𝑂1, 𝑂2 on ෩Φ+.

 For 𝛼 = ҧ𝜖𝑎 − ҧ𝜖𝑏 , 𝛽 = ҧ𝜖𝑐 − ҧ𝜖𝑑 ∈ ෩Φ+, we define

◼ Definition (quantum root vector)

 For 𝛽 ∈ ෩Φ+, we define                                in two ways depending on 𝑂𝑖 .

 For 𝛽 = 𝛼𝑖, we set 𝑒𝛽 = 𝑒𝑖.

 For 𝛽 = 𝛼 + 𝛼𝑖 (𝛼 = ҧ𝜖𝑎 − ҧ𝜖𝑏 ∈ ෩Φ+, 𝑎 < 𝑖), we set
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31/68Example: Rank 3

◼ We consider the case of 𝑂1.



32/68Example: Rank 3

◼ We consider the case of 𝑂1.



33/68Example: Rank 3

◼ We consider the case of 𝑂1.



34/68Example: Rank 3

◼ We consider the case of 𝑂1.
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◼ We consider the case of 𝑂1.



PBW bases of 𝑈𝑞
+(𝑠𝑙(𝑚|𝑛))

◼ Theorem [Yamane94]

 Let 𝛽1 < ⋯ < 𝛽𝑙 denote elements of ෩Φ+ under 𝑂𝑖
 For 𝐴 = 𝑎1, ⋯ , 𝑎𝑙 where 𝑎𝑡 are given by

we define 𝐸𝑖
𝐴 by

 Then

gives a basis of 𝑈𝑞
+.

 𝑒𝛽𝑡
(𝑎𝑡): divided power given by

 𝑘 𝑞!: factorial of 𝑞-number given by
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Transition matrix of PBW bases

◼ We define the transition matrix 𝛾 of PBW bases as follows:

 Here, we set 𝑋op = (𝑥𝑙 , ⋯ , 𝑥1) for 𝑋 = (𝑥1, ⋯ , 𝑥𝑙).

◼ From now on, we only consider the cases of rank 2 & 3.

 Transition matrices for higher rank cases are constructed as 
compositions of ones of rank 2.

 For rank 3 cases, compositions take the form of the left/right hand 
side of the tetrahedron equation.
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◼ Main part:

 Transition matrices of rank 2



◼
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Type A of rank 2 cases

◼ We set 

◼ Quantum root vectors of rank 2

◼ Transition matrix

◼ Dynkin diagrams of rank 2
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(1) (2)

(3) (4)



◼ Root system

◼ Transition matrix

◼ Theorem [Kuniba-Okado-Yamada13]

◼ Example For 𝑎, 𝑏, 𝑐 = (0,1,1), (∗) becomes

This is a relation of                .

40/68The case



◼ Root system

◼ Transition matrix

◼ Theorem [Y20]

◼ Example For 𝑎, 𝑏, 𝑐 = (0,1,1), (∗) becomes

This is a relation of                .

41/68The case



◼ Root system

◼ Transition matrix

◼ Corollary

 Here, we define by                        .

42/68The case



◼ Root system

◼ Transition matrix

◼ Theorem [Y20]

 Here, we define as follows:

43/68The case
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◼

◼ Main part:



 Transition matrices of rank 3 and the tetrahedron equation

◼

P.45~66



Type A of rank 3 cases

◼ We set                                        as follows:

 For 𝑖 − 𝑘 > 1, we have 𝑒 𝑖𝑗 𝑘 = 𝑒𝑖(𝑗𝑘) =: 𝑒𝑖𝑗𝑘.

◼ Quantum root vectors of rank 3

◼ Transition matrix
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Transition matrix of rank 2 in rank 3

◼ We use the following matrices:

 Given a Dynkin diagram, Γ(𝑥) is specified as the 3D R, L, M or N.
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Two ways construction of 𝛾: first way 47/68



Two ways construction of 𝛾: first way 48/68

______________



Two ways construction of 𝛾: first way 49/68

◼ For the underlined part, we used

______________



Two ways construction of 𝛾: first way 50/68

______________

______________



Two ways construction of 𝛾: first way 51/68

◼ For the underlined part, we used

______________

______________



Two ways construction of 𝛾: first way 52/68

______________

__________ ______________

______________



Two ways construction of 𝛾: first way 53/68

◼ For the underlined part, we used

__________ ______________

______________

______________



Two ways construction of 𝛾: first way 54/68

__________ ______________

_______________

______________

______________



Two ways construction of 𝛾: first way 55/68

◼ For the underlined part, we used

_______________

__________ ______________

______________

______________



Two ways construction of 𝛾: first way 56/68



Two ways construction of 𝛾: second way 57/68



Mother of tetrahedron equation

◼ Now,                                        is linearly independent.
Then, we have the following result.

◼ Theorem [Y20]

 Here, sign factors are given by
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Dynkin diagrams of type A of rank 3

◼ Without exchanges 𝜖 ↔ 𝛿, all Dynkin diagrams of rank 3 are given by

◼ The followings are easily attributed to (2) and (3), respectively.

◼ For (1),(2),(3), we obtain tetrahedron eq because 𝜌1 = 𝜌2 = 𝜌3 = 0.
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Dynkin diagrams of type A of rank 3

◼ Without exchanges 𝜖 ↔ 𝛿, all Dynkin diagrams of rank 3 are given by

◼ For (4),(5),(6), some 𝜌𝑖 are non-zero. Then, associated  equations 
become the tetrahedron equation up to sign factors.

◼ Here, we only consider (4) for them.
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(3)

(5)

(4)
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The case

◼ Root system

◼ Lemma

◼ Proof (The case Γ(23|1))
 ℎ: → defined by                              is an algebra 

hom by higher-order relations:

 and hold.

 Then we have
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The case

◼ Previous Theorem [Y20]

◼ Previous Lemma

◼ The theorem is specialized as follows:

 This is exactly the tetrahedron equation of [Kapranov-Voevodsky94]:
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The case 63/68

◼ Root system

◼ Lemma

◼ The theorem is specialized as follows:

 This is exactly the tetrahedron equation of [Bazhanov-Sergeev06]:



The case 64/68

◼ Root system

◼ Lemma

◼ The theorem is specialized as follows:

 This gives a new solution to the tetrahedron equation:



The case 65/68

◼ Root system

◼ Lemma



The case

◼ Previous Theorem [Y20]

◼ Previous Lemma

◼ By using 𝜌1 = 0, 𝜌2 = 𝜌3 = 1, the theorem is specialized as follows:

 There are ``nonlocal” sign factors which can not be eliminated at present.
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Concluding remarks: Crystal limit

◼ Consider non-super cases

 𝑩: canonical basis

 𝐢: indices of reduced expression of the longest element of Weyl group

 Lusztig’s parametrization: a bijection 𝑏𝐢: ℤ≥0
𝑙 → 𝑩 associated with 𝐢

 Transition map:

◼ Transition maps are obtained by transition matrices with 𝑞 → 0:

◼ A super analog of transition maps is obtained in a similar way.

◼ Prop [Y20]

 gives a non-trivial bijection on 0,1 2 × ℤ≥0.

 Non-zero elements are given by

 also gives a non-trivial bijection.
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Concluding remarks

◼ Remark

1. Type B cases give new solutions to the 3D reflection equations.

2. The crystal limit for                 and                 take values 0,±1.

◼ Summary

1. The 3D L is characterized as the transition matrix for                 .

2. A new solution to the tetrahedron equation the 3D N is obtained by 
considering the transition matrix for                 .

3. Several solutions to the tetrahedron equations are obtained without 
using any result for quantum coordinate rings (c.f. KOY theorem).

◼ Outlook

1. Eliminating nonlocal sign factors for                            

2. A super analog of KOY theorem

3. Geometric lifting of a super analog of transition maps
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