Tetrahedron and 3D reflection equation from PBW bases of the nilpotent subalgebra of quantum superalgebras

Discrete Mathematical Modelling Seminar@2021/01/13

Akihito Yoneyama Institute of Physics, University of Tokyo, Komaba

Based on: AY, arXiv: 2012.13385

Outline

■ Introduction: P.3~24
\square The 3D R and 3D L
\square Commuting transfer matrix
\square Matrix product solutions to the Yang-Baxter equation

- Setup: PBW bases of quantum superalgebras of type A
- Main part:

Transition matrices of rank 2 P.39~43
Transition matrices of rank 3 and the tetrahedron equation P.45~66

- Concluding remarks

Yang-Baxter equation

- Matrix equation on $V_{1} \otimes V_{2} \otimes V_{3}$ (V_{i} : linear space)

$$
R_{12}\left(x y^{-1}\right) R_{13}(x) R_{23}(y)=R_{23}(y) R_{13}(x) R_{12}\left(x y^{-1}\right)
$$

$\square R_{i j}(z)$ acts non-trivially only on $V_{i} \otimes V_{j}$.
\square Solutions to the Yang-Baxter eq are called R matrices.

- R matrices are systematically (infinitely many) constructed via irreps of quantum affine algebra $U_{q}(g)$.

Monodromy matrix \& RTT relation

- Monodromy matrix $T_{a 0}(z): V_{a} \otimes V_{0} \rightarrow V_{a} \otimes V_{0}$

■ By repeated uses of the Yang-Baxter equation, we have

$$
R_{a b}\left(x y^{-1}\right) T_{a 0}(x) T_{b 0}(y)=T_{b 0}(y) T_{a 0}(x) R_{a b}\left(x y^{-1}\right)
$$

Commuting transfer matrix

- Multiply $R_{a b}\left(x y^{-1}\right)^{-1}$ from the left:

$$
T_{a 0}(x) T_{b 0}(y)=\left[R_{a b}\left(x y^{-1}\right)\right]^{-1} T_{b 0}(y) T_{a 0}(x) R_{a b}\left(x y^{-1}\right)
$$

■ By taking the trace on $V_{a} \otimes V_{b}$, we have

$$
[\tau(x), \tau(y)]=0 \quad\left({ }^{\forall} x, y \in \mathbb{C}\right)
$$

- Here we set the row-to-row transfer matrix by
- A lot of families of integrable one-dimensional quantum spin chains are constructed via commutativty of the transfer matrix.
\square The transfer matrix gives $O(L)$ conserved quantities.
\square Eigenvalues are obtained by the Bethe ansatz.

Tetrahedron equation

- Matrix equation on $V_{1} \otimes \cdots \otimes V_{6}$ (V_{i} : linear space)

$$
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124}
$$

- $R_{i j k}$ acts non-trivially only on $V_{i} \otimes V_{j} \otimes V_{k}$.
\square Tetrahedron equation = Yang-Baxter equation up to conjugation
■ Unlike Yang-Baxter equation, a few families of solutions are known.
- We focus on solutions on the Fock spaces.

$$
\begin{aligned}
\text { boson Fock: } F & =\bigoplus_{m=0,1,2, \ldots} \mathbb{C}|m\rangle \\
\text { fermi Fock: } V & =\bigoplus_{m=0,1} \mathbb{C} u_{m}
\end{aligned}
$$

Solutions to tetrahedron equation: 3D R

- Set $\mathcal{R} \in \operatorname{End}\left(F^{\otimes 3}\right)$ by
[Kapranov-Voevodsky94]

$$
\begin{aligned}
& \mathcal{R}|i\rangle \otimes|j\rangle \otimes|k\rangle=\sum_{a, b, c} \mathcal{R}_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle \\
& \mathcal{R}_{i, j, j}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \frac{\left(q^{2}\right)_{c+\mu}}{\left(q^{2}\right)_{c}}\binom{i}{\mu}_{q^{2}}\binom{j}{\lambda}_{q^{2}}
\end{aligned}
$$

Here

$$
(q)_{k}=\prod_{l=1}^{k}\left(1-q^{l}\right) \quad\binom{a}{b}_{q}=\frac{(q)_{a}}{(q)_{b}(q)_{a-b}}
$$

- The 3D R satisfies the following tetrahedron equation:

$$
\begin{equation*}
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124} \tag{*}
\end{equation*}
$$

- 3D $\mathrm{R}=$ intertwiner of irreps of quantum coordinate ring $A_{q}\left(A_{2}\right)$

$$
\begin{array}{r}
\mathcal{R} \circ \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{\circ p}}(g)\right)=\pi_{2} \otimes \pi_{1} \otimes \pi_{2}(\Delta(g)) \circ \mathcal{R} \quad{ }^{\forall} g \in A_{q}\left(A_{2}\right) \\
\pi_{i}: A_{q}\left(A_{2}\right) \rightarrow \operatorname{End}(F)
\end{array}
$$

- " 121 " and " 212 " are associated with the longest element of Weyl group.
- This gives a linearization method for tetrahedron equation.

Solutions to tetrahedron equation: 3D L

■ Set $\mathcal{L} \in \operatorname{End}(V \otimes V \otimes F)$ by
[Bazhanov-Sergeev06]

$$
\begin{aligned}
& \mathcal{L}\left(u_{i} \otimes u_{j} \otimes|k\rangle\right)=\sum_{a, b \in\{0,1\}, c \in \mathbb{Z}_{\geq 0}} \mathcal{L}_{i, j, k}^{a, b, c} u_{a} \otimes u_{b} \otimes|c\rangle \\
& \mathcal{L}_{0,0, k}^{0,0, c}=\mathcal{L}_{1,1, k}^{1,1, c}=\delta_{k, c}, \quad \mathcal{L}_{0,1, k}^{0,1, c}=-\delta_{k, c} q^{k+1}, \quad \mathcal{L}_{1,0, k}^{1,0, c}=\delta_{k, c} q^{k}, \\
& \mathcal{L}_{1,0, k}^{0,1, c}=\delta_{k-1, c}\left(1-q^{2 k}\right), \quad \mathcal{L}_{0,1, k}^{1,0, c}=\delta_{k+1, c}
\end{aligned}
$$

■ The 3D L satisfies $\mathcal{L}_{124} \mathcal{L}_{135} \mathcal{L}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{L}_{236} \mathcal{L}_{135} \mathcal{L}_{124} \quad \cdots(*)$
■ BS obtained the 3D L by ansatz so that the tetrahedron equation of (*) type has a non-trivial solution, and solved (*) for the 3D R.

- Later, (*) is "identified" with the intertwining relations for $A_{q}\left(A_{2}\right)$.
[Kuniba-Okado12]
\square Algebraic origins of the 3D L has been still unclear.
- Recently, the classical limit of (*) is derived in relation to nontrivial transformations of a plabic network, which can be interpreted as cluster mutations. [Gavrylenko-Semenyakin-Zenkevich20]

Monodromy matrices

- The $3 D R$ and L satisfy the following weight conservation:

$$
\left[x^{\mathbf{h}_{1}}(x y)^{\mathbf{h}_{2}} y^{\mathbf{h}_{3}}, \mathcal{R}\right]=\left[x^{\mathbf{h}_{1}}(x y)^{\mathbf{h}_{2}} y^{\mathbf{h}_{3}}, \mathcal{L}\right]=0 \quad\left({ }^{\forall} x, y \in \mathbb{C}\right) \quad \cdots(*)
$$

\square Here, $\mathbf{h}_{1}=\mathbf{h} \otimes 1 \otimes 1$ etc. and $\mathbf{h}|m\rangle=m|m\rangle, \mathbf{h} u_{m}=m u_{m}$.

- The discussion below holds for solutions satisfying (*).

■ We use the following graphical notations:

STT=TTS: Commuting transfer matrix

- The above equation is obtained by repreated use of

STT=TTS: Commuting transfer matrix

- Multiply $x^{\mathbf{h}}, y^{\mathbf{h}}, u^{\mathbf{h}}, v^{\mathbf{h}}$ by several spaces:

STT=TTS: Commuting transfer matrix

■ Use the weight conservation $\left[x^{\mathbf{h}_{1}}(x y)^{\mathbf{h}_{2}} y^{\mathbf{h}_{3}}, \mathcal{R}\right]=\left[x^{\mathbf{h}_{1}}(x y)^{\mathbf{h}_{2}} y^{\mathbf{h}_{3}}, \mathcal{L}\right]=0$

STT=TTS: Commuting transfer matrix

- Move $(u / x)^{\mathbf{h}}$ and $(y / v)^{\mathbf{h}}$ to the right hand side:

STT=TTS: Commuting transfer matrix

■ Take the trace the auxiliary space:

STT=TTS: Commuting transfer matrix

- Note that the following parts are actually same matrices:

■ Then, if the above matrix is invertible, we can verify the commutativity by taking the trace on all auxiliary spaces.

STT=TTS: Commuting transfer matrix

- Define the transfer matrix by

- This satisfies the following commutativity: [Sergeev06]

$$
\left[\tau^{(m, n)}(x, y), \tau^{(m, n)}\left(x^{\prime}, y^{\prime}\right)\right]=0 \quad\left({ }^{\forall} x, y, x^{\prime}, y^{\prime} \in \mathbb{C}\right)
$$

- This is often called the layer-to-layer transfer matrix.

Comparing RTT relations in 2D and 3D

- $1+1+0$ dimension in 2 D

■ $2+2+1$ dimension in 3D

RSSS=SSSR: Reduction to Yang-Baxter eq 18/68

- $1+1+1+0$ dimension in 3 D

■ The above equation is obtained by repreated use of

RSSS=SSSR: Reduction to Yang-Baxter eq 19/68

- Multiply $x^{\mathbf{h}_{4}}(x y)^{\mathbf{h}_{5}} y^{\mathbf{h}_{6}}$:

RSSS=SSSR: Reduction to Yang-Baxter eq 20/68

■ Use the weight conservation $\left[x^{\mathbf{h}_{4}}(x y)^{\mathbf{h}_{5}} y^{\mathbf{h}_{6}}, \mathcal{R}\right]=0$:

- This gives the following identity:

$$
\begin{array}{r}
\mathcal{R}_{456}\left(x^{\mathbf{h}_{4}} \mathcal{S}_{1_{1} 2_{1} 4} \cdots \mathcal{S}_{1_{n} 2_{n} 4}\right)\left((x y)^{\mathbf{h}_{\mathbf{5}}} \mathcal{S}_{1_{1} 3_{1} 5} \cdots \mathcal{S}_{1_{n} 3_{n} 5}\right)\left(y^{\mathbf{h}_{\mathbf{6}}} \mathcal{S}_{2_{1} 3_{1} 6} \cdots \mathcal{S}_{2_{n} 3_{n} 6}\right) \\
=\left(y^{\mathbf{h}_{\mathbf{6}}} \mathcal{S}_{2_{1} 3_{1} 6} \cdots \mathcal{S}_{2_{n} 3_{n} 6}\right)\left((x y)^{\mathbf{h}_{\mathbf{5}}} \mathcal{S}_{1_{1} 3_{1} 5} \cdots \mathcal{S}_{1_{n} 3_{n} 5}\right)\left(x^{\mathbf{h}_{4}} \mathcal{S}_{1_{1} 2_{1} 4} \cdots \mathcal{S}_{1_{n} 2_{n} 4}\right) \mathcal{R}_{456} \\
\mathcal{S}=\mathcal{R} \text { or } \mathcal{L}
\end{array}
$$

RSSS=SSSR: Reduction to Yang-Baxter eq ${ }^{21 / 68}$

$$
\begin{aligned}
& \mathcal{R}_{456}\left(x^{\mathbf{h}_{4}} \mathcal{S}_{1_{1} 2_{1} 4} \cdots \mathcal{S}_{1_{n} 2_{n} 4}\right)\left((x y)^{\mathbf{h}_{\mathbf{5}}} \mathcal{S}_{1_{1} 3_{1} 5} \cdots \mathcal{S}_{1_{n} 3_{n} 5}\right)\left(y^{\mathbf{h}_{6}} \mathcal{S}_{2_{1} 3_{1} 6} \cdots \mathcal{S}_{2_{n} 3_{n} 6}\right) \\
& =\left(y^{\mathbf{h}_{\mathbf{6}}} \mathcal{S}_{2_{1} 3_{1} 6} \cdots \mathcal{S}_{2_{n} 3_{n} 6}\right)\left((x y)^{\mathbf{h}_{\mathbf{5}}} \mathcal{S}_{1_{1} 3_{1} 5} \cdots \mathcal{S}_{1_{n} 3_{n} 5}\right)\left(\mathbf{x}^{\mathbf{h}_{4}} \mathcal{S}_{1_{1} 2_{1} 4} \cdots \mathcal{S}_{1_{n} 2_{n} 4}\right) \mathcal{R}_{456}
\end{aligned}
$$

- From this identity, we can obtain solutions to Yang-Baxter eq by 1. multiplying \mathcal{R}_{456}^{-1} and taking the trace on the spaces 456 .

2. sandwiching between $\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right|$ and $\left|\chi_{r^{\prime}}\right\rangle \otimes\left|\chi_{r^{\prime}}\right\rangle \otimes\left|\chi_{r^{\prime}}\right\rangle$.

- Here, we use properties for the 3D R:

1. The $3 D R$ is invertible.
2. The $3 D R$ has two eigenvectors with eigenvalues $=1$ given by

$$
\begin{array}{ll}
\mathcal{R}\left|\chi_{r}\right\rangle \otimes\left|\chi_{r}\right\rangle \otimes\left|\chi_{r}\right\rangle=\left|\chi_{r}\right\rangle \otimes\left|\chi_{r}\right\rangle \otimes\left|\chi_{r}\right\rangle & (r=1,2) \\
\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right| \mathcal{R}=\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right| \otimes\left\langle\chi_{r}\right| & (r=1,2)
\end{array}
$$

Here

$$
\left|\chi_{r}\right\rangle=\sum_{m \geq 0} \frac{|r m\rangle}{\left(q^{r^{2}} ; q^{r^{2}}\right)_{m}}
$$

Matrix product solution to Yang-Baxter eq ${ }^{22 / 68}$

- These solutions are characterized as the R matrices associated with some quantum affine algebras.
[Kuniba-Okado-Sergeev15]

	$\boldsymbol{R}^{\text {tr }}(\mathbf{z})$	$\boldsymbol{R}^{\left(r, r^{\prime \prime}\right)}(\mathbf{z})$
$\dot{A}=3 \mathrm{DR}$	$U_{q}\left(A_{n-1}^{(1)}\right)$ symmetric tensor rep.	$U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(C_{n}^{(1)}\right)$ Fock rep.
$\boldsymbol{A}=3 \mathrm{DL}$	$U_{q}\left(A_{n-1}^{(1)}\right)$ fundamental rep.	$U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(B_{n}^{(1)}\right), U_{q}\left(D_{n}^{(1)}\right)$ spin rep.

■ Moreover, by mixing uses of the 3D R \& L, we also obtain the R matrices associated with generalized quantum groups.

- We consider the following transfer matrix where $\underset{\sim}{*}$ are the 3D L.

- Let us consider projections from two directions (1) \& (2).
- Both of them give the row-to-row transfer matrix in two dimension.
- This suggest the spectral duality between $s l(m)$ spin chain of size n and $s l(n)$ spin chain of size m. [Bazhanov-Sergeev06]
- The duality also appears in the context of the five-dimensional gauge theory. [Mironov-Morozov-Runov-Zenkevich-Zotov13]

Motivation \& KOY theorem

- Motivation
- Why do the 3D R \& L lead to such similar results, although they have totally different origins?
- We study transition matrices of PBW bases of $U_{q}^{+}(s l(m \mid n))$ motivated by the KOY theorem which holds for non-super cases.
- Theorem [Kuniba-Okado-Yamada13] (Rough Statement)
- g: arbitrary finite-dimensional simple Lie algebra
- Φ : intertwiner of irreducible representations of $A_{q}(g)$
- γ : transition matrix of PBW bases of the nilpotent subalgebra of $U_{q}(g)$
- Then, we have $\Phi=\gamma$.
- For \bigcirc —— , the 3D R gives the transition matrix for $U_{q}\left(A_{2}\right)$.
- One of our result is that the $3 \mathrm{D} L$ is exactly the transition matrix for the quantum superalgebra associated with \bigcirc - \otimes.

Outline

■ Introduction:

- The 3D R and 3D L
- Commuting transfer matrix
- Matrix product solutions to the Yang-Baxter equation
- Setup: PBW bases of quantum superalgebras of type A
- Main part:
- Transition matrices of rank 2 P.39~43

ㅁ Transition matrices of rank 3 and the tetrahedron equation P.45~66

- Concluding remarks

Root system of Lie superalgebras $s l(m \mid n)^{26 / 68}$

- Setup
\square Weight lattice: $\mathcal{E}(m \mid n)_{\mathbb{Z}}=\sum_{i=1}^{m} \mathbb{Z} \epsilon_{i} \oplus \sum_{i=1}^{n} \mathbb{Z} \delta_{i}$

$$
\left(\epsilon_{i}, \epsilon_{j}\right)=(-1)^{\theta} \delta_{i, j}, \quad\left(\delta_{i}, \delta_{j}\right)=-(-1)^{\theta} \delta_{i, j}, \quad\left(\epsilon_{i}, \delta_{j}\right)=0 \quad \theta=0,1
$$

- Parity: $p(\lambda)=\sum_{i=1}^{n} b_{i}(\bmod 2)$ for $\lambda=\sum_{i=1}^{m} a_{i} \epsilon_{i}+\sum_{i=1}^{n} b_{i} \delta_{i} \in \mathcal{E}(m \mid n)_{\mathbb{Z}}$
\square We set $\left\{\bar{\epsilon}_{i}\right\}_{1 \leq i \leq m+n}=\left\{\epsilon_{i}\right\}_{1 \leq i \leq m} \cup\left\{\delta_{i}\right\}_{1 \leq i \leq n}$.
- Lie superalgebra $\operatorname{sl}(m \mid n)$
- Rank: $r=m+n-1$
\square Simple roots: $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}, \alpha_{i}=\bar{\epsilon}_{i}-\bar{\epsilon}_{i+1}$
\square Reduced positive roots:

$$
\tilde{\Phi}^{+}=\left\{\bar{\epsilon}_{i}-\bar{\epsilon}_{j}(1 \leq i<j \leq r+1)\right\}
$$

- Even \& odd parts: $\tilde{\Phi}^{+}=\tilde{\Phi}_{\text {even }}^{+} \cup \tilde{\Phi}_{\text {iso }}^{+}$

$$
\begin{aligned}
\tilde{\Phi}_{\text {even }}^{+} & =\left\{\alpha \in \tilde{\Phi}^{+} \mid p(\alpha)=0\right\} \\
\tilde{\Phi}_{\text {iso }}^{+} & =\left\{\alpha \in \tilde{\Phi}^{+} \mid p(\alpha)=1\right\}
\end{aligned}
$$

Cartan matrix and Dynkin diagram

- Cartan matrix for Lie superalgebra $\operatorname{sl}(m \mid n)$
- $d_{\alpha}=(\alpha, \alpha) / 2$ for $\alpha \in \tilde{\Phi}_{\text {even }}^{+}, d_{\alpha}=1$ for $\alpha \in \tilde{\Phi}_{\text {iso }}^{+}$
$\square D=\operatorname{diag}\left(d_{1}, \cdots, d_{r}\right), d_{i}=d_{\alpha_{i}}$
- Cartan matrix: $A=\left(a_{i j}\right)_{i, j \in I}, a_{i j}=\left(\alpha_{i}, \alpha_{j}\right) / d_{i} \quad I=\{1, \cdots, r\}$
\square Simple coroots: $\left\{h_{i}\right\}_{i \in I}, \quad \alpha_{j}\left(h_{i}\right)=a_{i j}$
- Dynkin diagram for Cartan data (A, p)
\square Prepare r dots and decorate the i-th dot by

$$
\bigcirc \text { for } \alpha_{i} \in \tilde{\Phi}_{\text {even }}^{+}, \otimes \text { for } \alpha_{i} \in \tilde{\Phi}_{\text {iso }}^{+}
$$

ㅁ Connect them if $a_{i j} \neq 0(i \neq j)$:

■ Remark

- Dynkin diagrams do not correspond to Lie superalgebras themselves.

Quantum superalgebra $U_{q}(s l(m \mid n))$

- $U_{q}(s l(m \mid n))$: quantum superalgebras associated with (A, p)
- Generators: $e_{i}, f_{i}, k_{i}^{ \pm 1}(i \in I)$
- We use $q_{i}=q^{d_{i}}$.
- Part of relations:

$$
\begin{aligned}
& k_{i}^{ \pm 1} k_{i}^{\mp 1}=1, \quad k_{i} k_{j}=k_{j} k_{i}, \quad k_{i} e_{j}=q_{i}^{a_{i j}} e_{j} k_{i}, \quad k_{i} f_{j}=q_{i}^{-a_{i j}} f_{j} k_{i}, \\
& e_{i} f_{j}-(-1)^{p\left(\alpha_{i}\right) p\left(\alpha_{j}\right)} f_{j} e_{i}=\delta_{i, j} \frac{k_{i}-k_{i}^{-1}}{q_{i}-q_{i}^{-1}},
\end{aligned}
$$

Nilpotent subalgebra $U_{q}^{+}(s l(m \mid n))$

■ $U_{q}^{+}(s l(m \mid n))$: nilpotent subalgebra generated by $\left\{e_{i}\right\}_{i \in I}$
\square Root space decomposition:

$$
U_{q}^{+}(\mathfrak{s l}(m \mid n))_{\alpha}=\left\{g \mid k_{i} g=q_{i}^{\alpha\left(h_{i}\right)} g k_{i}(i \in I)\right\}
$$

- q-commutator:

$$
[x, y]_{q}=x y-(-1)^{p(\alpha) p(\beta)} q^{-(\alpha, \beta)} y x \quad \begin{array}{ll}
& x \in U_{q}^{+}(\mathfrak{s l}(m \mid n))_{\alpha} \\
& y \in U_{q}^{+}(\mathfrak{s l}(m \mid n))_{\beta}
\end{array}
$$

- Rest of relations:

1. For $a_{i j} \neq 0(i \neq j), \alpha_{i} \in \tilde{\Phi}_{\text {even: }}^{+}: \quad e_{i}^{2} e_{j}-\left(q+q^{-1}\right) e_{i} e_{j} e_{i}+e_{j} e_{i}^{2}=0$
2. For $a_{i j}=0$: $\left[e_{i}, e_{j}\right]=0$
3. For $\alpha_{i} \in \tilde{\Phi}_{\text {iso }}^{+}$:

$$
\left[\left[\left[e_{i-1}, e_{i}\right]_{q}, e_{i+1}\right]_{q}, e_{i}\right]=0
$$

4. $\left\{f_{i}\right\}_{i \in I}$ satisfies same relations as (1)~(3).

■ Remark
\square For $a_{i i}=0$ and $\alpha_{i} \in \widetilde{\Phi}_{\text {iso, }}^{+}$, we have $e_{i}^{2}=0$ from (2).

PBW bases of $U_{q}^{+}(s l(m \mid n))$

- We define two partial orders O_{1}, O_{2} on $\widetilde{\Phi}^{+}$.
\square For $\alpha=\bar{\epsilon}_{a}-\bar{\epsilon}_{b}, \beta=\bar{\epsilon}_{c}-\bar{\epsilon}_{d} \in \widetilde{\Phi}^{+}$, we define

$$
\begin{array}{ll}
O_{1}: & \alpha<\beta \\
O_{2}: & \alpha<\beta \quad \Longleftrightarrow \quad a<c \text { or }(a=c \text { and } b<d) \\
& \Longleftrightarrow a>c \text { or }(a=c \text { and } b>d)
\end{array}
$$

- Definition (quantum root vector)
- For $\beta \in \widetilde{\Phi}^{+}$, we define $e_{\beta} \in U_{q}^{+}(\mathfrak{s l}(m \mid n))_{\beta}$ in two ways depending on O_{i}.
- For $\beta=\alpha_{i}$, we set $e_{\beta}=e_{i}$.
\square For $\beta=\alpha+\alpha_{i}\left(\alpha=\bar{\epsilon}_{a}-\bar{\epsilon}_{b} \in \widetilde{\Phi}^{+}, a<i\right)$, we set

$$
e_{\beta}=\left\{\begin{array}{lll}
{\left[e_{i}, e_{\alpha}\right]_{q}} & \text { for } O_{1} & \left(\alpha<\alpha_{i}\right) \\
{\left[e_{\alpha}, e_{i}\right]_{q}} & \text { for } O_{2} & \left(\alpha_{i}<\alpha\right)
\end{array}\right.
$$

Example: Rank 3

- We consider the case of O_{1}.

$$
\bar{\epsilon}_{1}-\bar{\epsilon}_{2}<\bar{\epsilon}_{1}-\bar{\epsilon}_{3}<\bar{\epsilon}_{1}-\bar{\epsilon}_{4}<\bar{\epsilon}_{2}-\bar{\epsilon}_{3}<\bar{\epsilon}_{2}-\bar{\epsilon}_{4}<\bar{\epsilon}_{3}-\bar{\epsilon}_{4}
$$

Example: Rank 3

- We consider the case of O_{1}.

$$
\begin{gathered}
\bar{\epsilon}_{1}-\bar{\epsilon}_{2}<\bar{\epsilon}_{1}-\bar{\epsilon}_{3}<\bar{\epsilon}_{1}-\bar{\epsilon}_{4}<\bar{\epsilon}_{2}-\bar{\epsilon}_{3}<\bar{\epsilon}_{2}-\bar{\epsilon}_{4}<\bar{\epsilon}_{3}-\bar{\epsilon}_{4} \\
\alpha_{1}<\alpha_{1}+\alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}<\alpha_{2}<\alpha_{2}+\alpha_{3}<\alpha_{3}
\end{gathered}
$$

Example: Rank 3

- We consider the case of O_{1}.

$$
\begin{gathered}
\bar{\epsilon}_{1}-\bar{\epsilon}_{2}<\bar{\epsilon}_{1}-\bar{\epsilon}_{3}<\bar{\epsilon}_{1}-\bar{\epsilon}_{4}<\bar{\epsilon}_{2}-\bar{\epsilon}_{3}<\bar{\epsilon}_{2}-\bar{\epsilon}_{4}<\bar{\epsilon}_{3}-\bar{\epsilon}_{4} \\
\alpha_{1}<\alpha_{1}+\alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}<\alpha_{2}<\alpha_{2}+\alpha_{3}<\alpha_{3} \\
e_{1}
\end{gathered}
$$

Example: Rank 3

- We consider the case of O_{1}.

$$
\begin{gathered}
\bar{\epsilon}_{1}-\bar{\epsilon}_{2}<\bar{\epsilon}_{1}-\bar{\epsilon}_{3}<\bar{\epsilon}_{1}-\bar{\epsilon}_{4}<\bar{\epsilon}_{2}-\bar{\epsilon}_{3}<\bar{\epsilon}_{2}-\bar{\epsilon}_{4}<\bar{\epsilon}_{3}-\bar{\epsilon}_{4} \\
\alpha_{1}<\alpha_{1}+\alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}<\alpha_{2}<\alpha_{2}+\alpha_{3}<\alpha_{3} \\
e_{1} \\
{\left[e_{2}, e_{1}\right]_{q}}
\end{gathered}
$$

Example: Rank 3

- We consider the case of O_{1}.

$$
\left.\begin{array}{c}
\bar{\epsilon}_{1}-\bar{\epsilon}_{2}<\bar{\epsilon}_{1}-\bar{\epsilon}_{3}<\bar{\epsilon}_{1}-\bar{\epsilon}_{4}<\bar{\epsilon}_{2}-\bar{\epsilon}_{3}<\bar{\epsilon}_{2}-\bar{\epsilon}_{4}<\bar{\epsilon}_{3}-\bar{\epsilon}_{4} \\
\alpha_{1}<\alpha_{1}+\alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}<\alpha_{2}<\alpha_{2}+\alpha_{3}<\alpha_{3} \\
e_{1} \\
\end{array}\left[e_{2}, e_{1}\right]_{q} \quad\left[e_{3},\left[e_{2}, e_{1}\right]_{q}\right]_{q} \quad e_{2} \quad\left[e_{3}, e_{2}\right]_{q}<e_{3}\right]
$$

PBW bases of $U_{q}^{+}(s l(m \mid n))$

- Theorem [Yamane94]
- Let $\beta_{1}<\cdots<\beta_{l}$ denote elements of $\widetilde{\Phi}^{+}$under $O_{i} \quad l=\left|\tilde{\Phi}^{+}\right|$
\square For $A=\left(a_{1}, \cdots, a_{l}\right)$ where a_{t} are given by

$$
a_{t} \in \mathbb{Z}_{\geq 0} \text { for } \beta_{t} \in \tilde{\Phi}_{\text {even }}^{+} \quad a_{t} \in\{0,1\} \text { for } \beta_{t} \in \tilde{\Phi}_{\text {iso }}^{+}
$$

we define E_{i}^{A} by

$$
E_{i}^{A}=e_{\beta_{1}}^{\left(a_{1}\right)} e_{\beta_{2}}^{\left(a_{2}\right)} \cdots e_{\beta_{l}}^{\left(a_{l}\right)}
$$

- Then

$$
B_{i}=\left\{E_{i}^{A} \mid a_{t} \in \mathbb{Z}_{\geq 0}\left(\beta_{t} \in \tilde{\Phi}_{\text {even }}^{+}\right), a_{t} \in\{0,1\}\left(\beta_{t} \in \tilde{\Phi}_{\text {iso }}^{+}\right)\right\}
$$

gives a basis of U_{q}^{+}.
$\square e_{\beta_{t}}^{\left(a_{t}\right)}$: divided power given by $e_{\beta_{t}}^{\left(a_{t}\right)}=e_{\beta_{t}}^{a_{t}} /\left[a_{t}\right]_{p_{t}}!\quad p_{t}=q^{d_{\beta_{t}}}$

- [$k]_{q}!$: factorial of q-number given by

$$
[m]_{q}!=\prod_{k=1}^{m}[k]_{q} \quad[k]_{q}=\frac{q^{k}-q^{-k}}{q-q^{-1}}
$$

- We define the transition matrix γ of PBW bases as follows:

$$
E_{2}^{A}=\sum_{B} \gamma_{B}^{A} E_{1}^{B^{\mathrm{op}}}
$$

ㅁ Here, we set $X^{\mathrm{op}}=\left(x_{l}, \cdots, x_{1}\right)$ for $X=\left(x_{1}, \cdots, x_{l}\right)$.

- From now on, we only consider the cases of rank $2 \& 3$.
- Transition matrices for higher rank cases are constructed as compositions of ones of rank 2.
\square For rank 3 cases, compositions take the form of the left/right hand side of the tetrahedron equation.

Outline

■ Introduction:

- The 3D R and 3D L
- Commuting transfer matrix
- Matrix product solutions to the Yang-Baxter equation

■ Setup: PBW bases of quantum superalgebras of type A
■ Main part: - Transition matrices of rank 2 P.39~43

ㅁ Transition matrices of rank 3 and the tetrahedron equation P.45~66
■ Concluding remarks

Type A of rank 2 cases

■ We set $e_{i j}=\left[e_{i}, e_{j}\right]_{q}$
■ Quantum root vectors of rank 2

$$
\begin{array}{lll}
B_{1}: & e_{\beta_{1}}=e_{1}, \quad e_{\beta_{2}}=e_{21}, \quad e_{\beta_{3}}=e_{2} \\
B_{2}: & e_{\beta_{1}}=e_{2}, \quad e_{\beta_{2}}=e_{12}, \quad e_{\beta_{3}}=e_{1}
\end{array} \quad \beta_{1}<\beta_{2}<\beta_{3}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)}
$$

- Dynkin diagrams of rank 2
(1)

$$
\begin{array}{cc}
\epsilon_{1}-\epsilon_{2} & \epsilon_{2}-\epsilon_{3} \\
\bigcirc-\bigcirc \\
\epsilon_{1}-\delta_{2} & \delta_{2}-\delta_{3} \\
\otimes & \bigcirc
\end{array}
$$

$$
\begin{array}{cc}
\epsilon_{1}-\epsilon_{2} & \epsilon_{2}-\delta_{3} \\
\bigcirc-\otimes
\end{array}
$$

$$
\begin{array}{cc}
\epsilon_{1}-\delta_{2} & \delta_{2}-\epsilon_{3} \\
\otimes & \otimes
\end{array}
$$

The case \bigcirc - \bigcirc

$\begin{array}{cc}\epsilon_{1}-\epsilon_{2} & \epsilon_{2}- \\ \bigcirc & \end{array}$

$$
\left(\epsilon_{i}, \epsilon_{i}\right)=1
$$

$$
D A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

- Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\{ \}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \cdots(*) \quad i, j, k, a, b, c \in \mathbb{Z}_{\geq 0}
$$

■ Theorem [Kuniba-Okado-Yamada13] $\gamma_{i, j, k}^{a, b, c}=\mathcal{R}_{i, j, k}^{a, b, c}$

- Example For $(a, b, c)=(0,1,1),(*)$ becomes

$$
\begin{aligned}
& e_{12} e_{1}=\mathcal{R}_{0,1,1}^{0,1,1} e_{1} e_{21}+\mathcal{R}_{1,0,2}^{0,1,1} \frac{e_{1}^{2}}{q+q^{-1}} e_{2} \\
& -q e_{2} e_{1}^{2}+\left(1+q^{2}\right) e_{1} e_{2} e_{1}-q e_{1}^{2} e_{2}=0 \quad \because \mathcal{R}_{0,1,1}^{0,1,1}=-q^{2}, \mathcal{R}_{1,0,2}^{0,1,1}=1-q^{4}
\end{aligned}
$$

This is a relation of \bigcirc

The case \bigcirc - Q

$\epsilon_{1}-\epsilon_{2} \quad \epsilon_{2}-\delta_{3}$
$\bigcirc-\otimes$
$\left(\epsilon_{i}, \epsilon_{i}\right)=1$
$\left(\delta_{i}, \delta_{i}\right)=-1$
$D A=\left(\begin{array}{cc}2 & -1 \\ -1 & 0\end{array}\right)$

- Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}
$$

- Transition matrix

$$
e_{2}^{a} e_{12}^{b} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{j} e_{2}^{i} \quad \cdots(*) \quad \begin{aligned}
& k, c \in \mathbb{Z}_{\geq 0} \\
& \\
& i, j, a, b \in\{0,1\}
\end{aligned}
$$

■ Theorem [Y20] $\gamma_{i, j, k}^{a, b, c}=\mathcal{L}_{i, j, k}^{a, b, c}$

- Example For $(a, b, c)=(0,1,1),(*)$ becomes

$$
\begin{aligned}
& e_{12} e_{1}=\mathcal{L}_{0,1,1}^{0,1,1} e_{1} e_{21}+\mathcal{L}_{1,0,2}^{0,1,1} \frac{e_{1}^{2}}{q+q^{-1}} e_{2} \\
& -q e_{2} e_{1}^{2}+\left(1+q^{2}\right) e_{1} e_{2} e_{1}-q e_{1}^{2} e_{2}=0 \quad \because \mathcal{L}_{0,1,1}^{0,1,1}=-q^{2}, \mathcal{L}_{1,0,2}^{0,1,1}=1-q^{4}
\end{aligned}
$$

This is a relation of \bigcirc

$$
\begin{array}{cll}
\epsilon_{1}-\delta_{2} & \delta_{2}-\delta_{3} & \left(\epsilon_{i}, \epsilon_{i}\right)=-1 \\
\otimes & \left(\delta_{i}, \delta_{i}\right)=1
\end{array} \quad D A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 2
\end{array}\right)
$$

- Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{2}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{b} e_{1}^{c}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{k} e_{21}^{j} e_{2}^{(i)} \quad \cdots(*) \quad \begin{aligned}
& i, a \in \mathbb{Z}_{\geq 0} \\
& j, k, b, c \in\{0,1\}
\end{aligned}
$$

- Corollary $\gamma_{i, j, k}^{a, b, c}=\mathcal{M}_{i, j, k}^{a, b, c}$
\square Here, we define $\mathcal{M} \in \operatorname{End}(F \otimes V \otimes V)$ by $\mathcal{M}_{i, j, k}^{a, b, c}=\mathcal{L}_{k, j, i}^{c, b, a}$.

The case \otimes —— \otimes

$$
\begin{array}{ccl}
\epsilon_{1}-\delta_{2} & \delta_{2}-\epsilon_{3} & \left(\epsilon_{i}, \epsilon_{i}\right)=-1 \\
\otimes & \otimes & \left(\delta_{i}, \delta_{i}\right)=1
\end{array} \quad D A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

■ Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}+\alpha_{2}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{1}, \alpha_{2}\right\}
$$

■ Transition matrix

$$
e_{2}^{a} e_{12}^{(b)} e_{1}^{c}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{k} e_{21}^{(j)} e_{2}^{i} \quad l \begin{aligned}
& j, b \in \mathbb{Z}_{\geq 0} \\
& i, k, a, c \in\{0,1\}
\end{aligned}
$$

■ Theorem [Y20] $\gamma_{i, j, k}^{a, b, c}=\mathcal{N}_{i, j, k}^{a, b, c}$
ㅁ Here, we define $\mathcal{N} \in \operatorname{End}(V \otimes F \otimes V)$ as follows:

$$
\begin{aligned}
& \mathcal{N}\left(u_{i} \otimes|j\rangle \otimes u_{k}\right)=\sum_{a, c \in\{0,1\}, b \in \mathbb{Z}_{\geq 0}} \mathcal{N}_{i, j, k}^{a, b, c} u_{a} \otimes|b\rangle \otimes u_{c} \\
& \mathcal{N}_{0, j, 0}^{0, b, 0}=\delta_{j, b} q^{j}, \quad \mathcal{N}_{1, j, 1}^{1, b, 1}=-\delta_{j, b} q^{j+1}, \quad \mathcal{N}_{0, j, 1}^{0, b, 1}=\mathcal{N}_{1, j, 0}^{1, b, 0}=\delta_{j, b}, \\
& \mathcal{N}_{1, j, 1}^{0, b, 0}=\delta_{j+1, b} q^{j}\left(1-q^{2}\right), \quad \mathcal{N}_{0, j, 0}^{1, b, 1}=\delta_{j-1, b}[j]_{q},
\end{aligned}
$$

Outline

■ Introduction:

- The 3D R and 3D L
- Commuting transfer matrix
- Matrix product solutions to the Yang-Baxter equation

■ Setup: PBW bases of quantum superalgebras of type A
■ Main part:

- Transition matrices of rank 2
P. $39 \sim 43$
- Transition matrices of rank 3 and the tetrahedron equation
- Concluding remarks

Type A of rank 3 cases

- We set $e_{(i j) k}, e_{i(j k)} \in U_{q}^{+}(\mathfrak{s l}(m \mid n))$ as follows:

$$
e_{(i j) k}=\left[e_{i j}, e_{k}\right]_{q}, \quad e_{i(j k)}=\left[e_{i}, e_{j k}\right]_{q} \quad e_{i j}=\left[e_{i}, e_{j}\right]_{q}
$$

\square For $|i-k|>1$, we have $e_{(i j) k}=e_{i(j k)}=$: $e_{i j k}$.
■ Quantum root vectors of rank 3

$$
\begin{aligned}
B_{1}: & e_{\beta_{1}}=e_{1}, \quad e_{\beta_{2}}=e_{21}, \quad e_{\beta_{3}}=e_{321}, \\
& e_{\beta_{4}}=e_{2}, \quad e_{\beta_{5}}=e_{32}, \quad e_{\beta_{6}}=e_{3} \\
B_{2}: & e_{\beta_{1}}=e_{3}, \quad e_{\beta_{2}}=e_{23}, \quad e_{\beta_{3}}=e_{2}, \\
& e_{\beta_{4}}=e_{123}, \quad e_{\beta_{5}}=e_{12}, \quad e_{\beta_{6}}=e_{1}
\end{aligned} \quad \beta_{1}<\cdots<\beta_{6}
$$

- Transition matrix

$$
e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}} \gamma_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}}^{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}} e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}
$$

Transition matrix of rank 2 in rank 3

- We use the following matrices:

$$
\begin{aligned}
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)} & =\sum_{i, j, k} \Gamma_{i, j, k}^{(2 \mid 1) a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \\
e_{3}^{(a)} e_{23}^{(b)} e_{2}^{(c)} & =\sum_{i, j, k} \Gamma_{i, j, k}^{(3 \mid 2) a, b, c} e_{2}^{(k)} e_{32}^{(j)} e_{3}^{(i)} \\
e_{23}^{(a)} e_{123}^{(b)} e_{1}^{(c)} & =\sum_{i, j, k} \Gamma_{i, j, k}^{(23 \mid 1) a, b, c} e_{i, j, k}^{(k)} e_{(23) 1}^{(j)} e_{23}^{(i)} \\
e_{32}^{(a)} e_{1(32)}^{(b)} e_{1}^{(c)} & =\sum_{i, j, k} \Gamma_{i, j, k}^{(32 \mid 1) a, b, c} e_{i}^{(k)} e_{321}^{(j)} e_{32}^{(i)} \\
e_{3}^{(a)} e_{123}^{(b)} e_{12}^{(c)} & =\sum_{i, j, k} \Gamma_{i, j, k}^{(3 \mid 12) a, b, c} e_{12}^{(k)} e_{3(12)}^{(j)} e_{3}^{(i)} \\
e_{3}^{(a)} e_{(21) 3}^{(b)} e_{21}^{(c)} & =\sum_{i, j, k} \Gamma^{(3 \mid 21) a, b, c}{ }_{i, j, k}^{(k)} e_{21}^{(k)} e_{321}^{(j)} e_{3}^{(i)}
\end{aligned}
$$

- Given a Dynkin diagram, $\Gamma^{(x)}$ is specified as the 3D R, L, M or N.

Two ways construction of γ : first way

$$
e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}
$$

Two ways construction of γ : first way

$$
e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}
$$

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2)}{ }_{x_{1}, o_{2}, o_{3}, o_{3}}^{o_{3}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}
\end{aligned}
$$

- For the underlined part, we used

$$
e_{3}^{(a)} e_{23}^{(b)} e_{2}^{(c)}=\sum_{i, j, k} \Gamma_{i, j, k}^{(3 \mid 2) a, b, c} e_{2}^{(k)} e_{32}^{(j)} e_{3}^{(i)}
$$

Two ways construction of γ : first way

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2)}{ }_{x_{1}, o_{2}, o_{2}, x_{3}}^{o_{3}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}}{=\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}}{ }_{x_{1}, x_{2}, x_{3}}^{\left(x_{3}\right)} e_{2}^{\left(x_{2}\right)} e_{32}^{\left(x_{1}\right)} e_{3}^{\left(o_{4}\right)} e_{123}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}} \\
& =\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}}{ }_{x_{1}, x_{2}, x_{3}}^{(3 \mid 12)} \Gamma_{x_{1}, o_{4}, o_{5}}^{\left(x_{4}, x_{5}\right.} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)} e_{3(12)}^{\left(x_{4}\right)} e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)}
\end{aligned}
$$

■ For the underlined part, we used

$$
e_{3}^{(a)} e_{123}^{(b)} e_{12}^{(c)}=\sum_{i, j, k} \Gamma_{i, j, k}^{(3 \mid 12) a, b, c} e_{12}^{(k)} e_{3(12)}^{(j)} e_{3}^{(i)}
$$

$$
\begin{aligned}
& \frac{e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}}{=\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}}{ }_{x_{1}, x_{2}, x_{3}}^{\left(x_{3}\right)} e_{22}^{\left(x_{2}\right)} e_{32}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}} \\
& =\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}}{ }_{x_{1}, x_{2}, x_{3}}^{(3 \mid 12) \Gamma_{1}, o_{4}, o_{5}}{ }_{i_{1}, x_{4}, x_{5}}^{\left(x_{3}\right)} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)} e_{3(12)}^{\left(x_{4}\right)} e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)}
\end{aligned}
$$

Two ways construction of γ : first way

$$
\begin{aligned}
& \frac{e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}}{=\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}} x_{1}, x_{2}, x_{3}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}} x_{1}, x_{2}, x_{3} \\
& =\sum(-1)^{(3 \mid 12) x_{1}, o_{4}, o_{5}} e_{i_{1}, x_{4}, x_{5}}^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{\left(x_{3}\right)} \Gamma_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)} e_{3(12)}^{\left(x_{4}\right)} \frac{e_{3}^{\left(o_{2}, o_{3}\right.} x_{1}, x_{3} \Gamma_{1}^{\left(i_{1}\right)} \Gamma_{1}^{\left(o_{6}\right)}}{\substack{x_{1}, o_{4}, o_{5} \\
i_{1}, x_{4}, x_{5}}} \\
& \quad \times e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{32}^{\left(x_{2}\right)} e_{1(32)}^{\left(x_{4}\right)} e_{1}^{\left(o_{6}\right)} e_{3}^{\left(i_{1}\right)}
\end{aligned}
$$

- For the underlined part, we used

$$
\left[e_{32}, e_{12}\right]=\left[e_{3}, e_{1}\right]=0 \quad e_{3(12)}=(-1)^{p\left(\alpha_{1}\right) p\left(\alpha_{3}\right)} e_{1(32)}
$$

Two ways construction of γ : first way

$$
\rho_{1}=p\left(\alpha_{1}\right) p\left(\alpha_{3}\right)
$$

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2){ }_{o_{1}, o_{2}, o_{3}}^{x_{1}, x_{2}, x_{3}}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2)}{ }_{o_{1}, x_{2}, o_{2}, o_{3}}^{x_{1}} \Gamma^{(3 \mid 12)}{ }_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} e_{2}^{\left(x_{3}\right)} \underline{e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)}} e_{3(12)}^{\left(x_{4}\right)} e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2)}{ }_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{3}} \Gamma^{(3 \mid 12)} \begin{array}{c}
x_{1}, o_{4}, o_{5} \\
i_{1}, x_{4}, x_{5}
\end{array} \\
& \times e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{32}^{\left(x_{2}\right)} e_{1(32)}^{\left(x_{4}\right)} e_{1}^{\left(o_{6}\right)} e_{3}^{\left(i_{1}\right)} \\
& \rho_{2}=p\left(\alpha_{1}+\alpha_{2}\right) p\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

Two ways construction of γ : first way

$$
\rho_{1}=p\left(\alpha_{1}\right) p\left(\alpha_{3}\right)
$$

- For the underlined part, we used

$$
e_{32}^{(a)} e_{1(32)}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \Gamma_{i, j, k}^{(32 \mid 1) a, b, c} e_{1}^{(k)} e_{321}^{(j)} e_{32}^{(i)}
$$

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}}{ }_{x_{1}, x_{2}, x_{3}}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2) o_{1}, o_{2}, o_{3}} \Gamma_{x_{1}, x_{2}, x_{3}}^{(3 \mid 12){ }_{i_{1}, o_{4}, o_{5}}^{i_{1}, x_{4}, x_{5}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)} e_{3(12)}^{\left(x_{4}\right)} e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)}} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2){ }_{o_{1}, o_{2}, o_{3}}^{x_{1}, x_{2}, x_{3}}} \Gamma^{(3 \mid 12)} \stackrel{x_{1}, o_{4}, o_{5}}{i_{1}, x_{4}, x_{5}} \\
& \times e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{32}^{\left(x_{2}\right)} e_{1(32)}^{\left(x_{4}\right)} e_{1}^{\left(o_{6}\right)} e_{3}^{\left(i_{1}\right)} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2)} \underset{x_{1}, x_{2}, x_{3}}{o_{1}, o_{2}, o_{3}} \Gamma^{(3 \mid 12){ }_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \Gamma^{(32 \mid 1)} \underset{i_{2}, i_{4}, x_{6}}{x_{2}, x_{4}, o_{6}}} \\
& \times e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{1}^{\left(x_{6}\right)} e_{321}^{\left(i_{4}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2) o_{o_{1}, o_{2}, o_{3}}^{x_{1}, x_{2}, x_{3}}} e_{2}^{\left(x_{3}\right)} e_{32}^{\left(x_{2}\right)} e_{3}^{\left(x_{1}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum \Gamma^{(3 \mid 2)}{ }_{o_{1}, x_{2}, o_{2}, o_{3}}^{x_{3}} \Gamma_{i_{1}, x_{4}, x_{5}}^{(3 \mid 12)}{ }_{2}^{x_{1}, o_{4}, o_{5}} e_{2}^{\left(x_{3}\right)} \underline{e_{32}^{\left(x_{2}\right)} e_{12}^{\left(x_{5}\right)}} \underline{e_{3(12)}^{\left(x_{4}\right)}} \underline{e_{3}^{\left(i_{1}\right)} e_{1}^{\left(o_{6}\right)}} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2)} \underset{x_{1}, x_{2}, x_{3}}{o_{1}, o_{2}, o_{3}} \Gamma^{(3 \mid 12)} \begin{array}{c}
x_{1}, o_{4}, o_{5} \\
i_{1}, x_{4}, x_{5}
\end{array} \\
& \times e_{2}^{\left(x_{3}\right)} e_{12}^{\left(x_{5}\right)} e_{32}^{\left(x_{2}\right)} e_{1(32)}^{\left(x_{4}\right)} e_{1}^{\left(o_{6}\right)} e_{3}^{\left(i_{1}\right)} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2){ }_{o_{1}, o_{2}, o_{3}}^{x_{1}, x_{2}, x_{3}}} \Gamma^{(3 \mid 12){ }_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \Gamma^{(32 \mid 1)} \underset{i_{2}, i_{4}, x_{6}}{x_{2}, x_{4}, o_{6}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}} \Gamma^{(3 \mid 2){ }_{x_{1}, o_{2}, o_{3}}^{o_{2}, x_{3}}} \Gamma^{(3 \mid 12)} \underset{i_{1}, x_{4}, x_{5}}{x_{1}, o_{4}, o_{5}} \Gamma^{(32 \mid 1)} \underset{i_{2}, i_{4}, x_{6}}{x_{2}, x_{4}, o_{6}} \Gamma^{(2 \mid 1){ }_{i_{3}, i_{5}, i_{6}}^{(2)} x_{5}, x_{6}} \\
& \times e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{2}^{\left(i_{3}\right)} e_{321}^{\left(i_{4}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)} \\
& =\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} i_{3} i_{4}} \Gamma^{(3 \mid 2)} \underset{x_{1}, x_{2}, x_{3}}{o_{1}, o_{2}, o_{3}} \Gamma^{(3 \mid 12)} \underset{i_{1}, x_{4}, x_{5}}{x_{1}, o_{4}, o_{5}} \Gamma^{(32 \mid 1)} \underset{i_{2}, i_{4}, x_{6}}{x_{2}, x_{4}, o_{6}} \Gamma^{(2 \mid 1)} \underset{i_{3}, i_{5}, i_{6}}{x_{3}, x_{5}, x_{6}} \\
& \times e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}
\end{aligned}
$$

Two ways construction of γ : second way

$$
\begin{aligned}
& e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} \underline{e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)}} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =(-1)^{\rho_{3} o_{3} o_{4}} e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{123}^{\left(o_{4}\right)} \underline{e}_{2}^{\left(o_{3}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)} \\
& =\sum(-1)^{\rho_{3} o_{3} o_{4}} \Gamma^{(2 \mid 1) o_{3}, o_{5}, o_{6}}{ }_{x_{3}, x_{5}, x_{6}}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{123}^{\left(o_{4}\right)} e_{1}^{\left(x_{6}\right)} e_{21}^{\left(x_{5}\right)} e_{2}^{\left(x_{3}\right)} \\
& =\sum(-1)^{\rho_{3} o_{3} o_{4}} \Gamma^{(2 \mid 1) o_{3}, o_{5}, o_{6}} \Gamma_{x_{3}, x_{5}, x_{6}}^{(23 \mid 1) o_{2}, o_{4}, x_{6}}{ }_{x_{2}, x_{4}, i_{6}}^{e_{3}^{\left(o_{1}\right)} e_{1}^{\left(i_{6}\right)}} e_{(23) 1}^{e_{1}^{\left(x_{4}\right)}} \underline{e}_{23}^{\left(x_{2}\right)} e_{21}^{\left(x_{5}\right)} e_{2}^{\left(x_{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \times e_{1}^{\left(i_{6}\right)} e_{3}^{\left(o_{1}\right)} e_{(21) 3}^{\left(x_{4}\right)} e_{21}^{\left(x_{5}\right)} e_{23}^{\left(x_{2}\right)} e_{2}^{\left(x_{3}\right)} \\
& =\sum(-1)^{\rho_{1}\left(o_{1} i_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} o_{3} o_{4}} \Gamma^{(2 \mid 1)} \underset{x_{3}, x_{5}, x_{6}}{o_{3}, o_{5}, o_{6}} \Gamma_{x_{2}, x_{4}, i_{6}}^{(23 \mid 1) o_{2}, o_{4}, x_{6}} \Gamma^{(3 \mid 21)}{ }_{x_{1}, i_{4}, i_{5}}^{(2)} \\
& \times e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} \underline{e_{3}^{\left(x_{1}\right)} e_{23}^{\left(x_{2}\right)} e_{2}^{\left(x_{3}\right)}} \\
& =\sum(-1)^{\rho_{1}\left(o_{1} i_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} o_{3} o_{4}} \Gamma^{(2 \mid 1){ }_{o_{3}, o_{5}, o_{6}}^{x_{3}, x_{5}, x_{6}}} \Gamma_{x_{2}, x_{4}, i_{6}}^{(23 \mid 1) o_{2}, o_{4}, x_{6}} \Gamma_{x_{2}, i_{4}, i_{5}}^{(3 \mid 21) o_{1}, x_{4}, x_{5}} \Gamma_{\substack{(3 \mid 2) \\
x_{1}, i_{2}, i_{3}}}^{x_{1}, x_{2}, x_{3}} \\
& \times e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{23}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}
\end{aligned}
$$

Mother of tetrahedron equation

\square Now, $\left\{e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{23}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)}\right\}$ is linearly independent. Then, we have the following result.

- Theorem [Y20]

$$
\begin{aligned}
& \sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} i_{3} i_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum(-1)^{\rho_{1}\left(o_{1} i_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} o_{3} o_{4}}
\end{aligned}
$$

- Here, sign factors are given by

$$
\rho_{1}=p\left(\alpha_{1}\right) p\left(\alpha_{3}\right), \quad \rho_{2}=p\left(\alpha_{1}+\alpha_{2}\right) p\left(\alpha_{2}+\alpha_{3}\right), \quad \rho_{3}=p\left(\alpha_{2}\right) p\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

Dynkin diagrams of type A of rank 3

- Without exchanges $\epsilon \leftrightarrow \delta$, all Dynkin diagrams of rank 3 are given by

$\epsilon_{2}-\epsilon_{3}$
$\epsilon_{3}-\epsilon_{4}$

$\epsilon_{2}-\epsilon_{3}$
$\epsilon_{3}-\delta_{4}$
(4)

$$
\epsilon_{1}-\epsilon_{2}
$$

$$
\epsilon_{2}-\delta_{3}
$$

$$
\delta_{3}-\delta_{4}
$$

(6)
$\begin{array}{ccc}\epsilon_{1}-\delta_{2} & \delta_{2}-\epsilon_{3} & \epsilon_{3}-\delta_{4} \\ \otimes \longrightarrow\end{array}$

■ The followings are easily attributed to (2) and (3), respectively.
(7)
$\epsilon_{1}-\delta_{2} \quad \delta_{2}-\delta_{3} \quad \delta_{3}-\delta_{4}$

■ For (1),(2),(3), we obtain tetrahedron eq because $\rho_{1}=\rho_{2}=\rho_{3}=0$.

Dynkin diagrams of type A of rank 3

- Without exchanges $\epsilon \leftrightarrow \delta$, all Dynkin diagrams of rank 3 are given by
(1)

(3)

(4)

$\epsilon_{1}-\delta_{2} \quad \delta_{2}-\delta_{3} \quad \delta_{3}-\epsilon_{4}$
(5)

■ For (4),(5),(6), some ρ_{i} are non-zero. Then, associated equations become the tetrahedron equation up to sign factors.

■ Here, we only consider (4) for them.

$$
\epsilon_{1}-\epsilon_{2} \quad \epsilon_{2}-\epsilon_{3} \quad \epsilon_{3}-\epsilon_{4}
$$

$$
\left(\epsilon_{i}, \epsilon_{i}\right)=1 \quad D A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

- Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\{ \}
$$

- Lemma

$$
\Gamma^{(2 \mid 1)}=\Gamma^{(3 \mid 2)}=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{R}
$$

- Proof (The case $\Gamma^{(23 \mid 1)}$)
- $h: \bigcirc — \bigcirc \rightarrow \bigcirc — \bigcirc-\bigcirc$ defined by $e_{1} \mapsto e_{1}, e_{2} \mapsto e_{23}$ is an algebra hom by higher-order relations:

$$
e_{1}^{2} e_{23}-\left(q+q^{-1}\right) e_{1} e_{23} e_{1}+e_{23} e_{1}^{2}=e_{23}^{2} e_{1}-\left(q+q^{-1}\right) e_{23} e_{1} e_{23}+e_{1} e_{23}^{2}=0
$$

$\square[m]_{q^{d_{\alpha_{2}}+\alpha_{3}}}!=[m]_{q^{d_{\alpha_{2}}}}$! and $[m]_{q^{d_{\alpha_{1}}+\alpha_{2}+\alpha_{3}}}!=[m]_{q^{d_{\alpha_{1}+\alpha_{2}}}}$! hold.
\square Then we have

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \mathcal{R}_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \mapsto e_{23}^{(a)} e_{123}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \mathcal{R}_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{(23) 1}^{(j)} e_{23}^{(i)}
$$

- Previous Theorem [Y20]

$$
\begin{aligned}
& \rho_{1}=p\left(\alpha_{1}\right) p\left(\alpha_{3}\right) \\
& \rho_{2}=p\left(\alpha_{1}+\alpha_{2}\right) p\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

$$
\sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} i_{3} i_{4}}
$$

$$
=\sum(-1)^{\rho_{1}\left(o_{1} i_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} o_{3} o_{4}}
$$

$$
\times \Gamma^{(2 \mid 1)}{ }_{x_{3}, x_{5}, x_{6}}^{o_{3}, o_{5}, o_{6}} \Gamma_{x_{2}, x_{4}, i_{6}}^{(23 \mid 1) o_{2}, o_{4}, x_{6}} \Gamma_{x_{1}, i_{4}, i_{5}}^{(3 \mid 21)}{ }_{o_{1}, x_{4}, x_{5}}^{(3 \mid 2)}{ }_{i_{1}, i_{2}, i_{3}}^{x_{1}, x_{2}, x_{3}}
$$

- Previous Lemma

$$
\Gamma^{(2 \mid 1)}=\Gamma^{(3 \mid 2)}=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{R}
$$

■ The theorem is specialized as follows:
$\sum \mathcal{R}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{R}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{R}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \mathcal{R}_{i_{3}, i_{5}, i_{6}}^{x_{3}, x_{5}, x_{6}}=\sum \mathcal{R}_{x_{3}, x_{5}, x_{6}}^{o_{3}, o_{5}, o_{6}} \mathcal{R}_{x_{2}, x_{4}, i_{6}}^{o_{2}, o_{4}, x_{6}} \mathcal{R}_{x_{1}, i_{4}, i_{5}}^{o_{1}, x_{4}, x_{5}} \mathcal{R}_{i_{1}, i_{2}, i_{3}}^{x_{1}, x_{2}, x_{3}}$
\square This is exactly the tetrahedron equation of [Kapranov-Voevodsky94]:

$$
\mathcal{R}_{123} \mathcal{R}_{145} \mathcal{R}_{246} \mathcal{R}_{356}=\mathcal{R}_{356} \mathcal{R}_{246} \mathcal{R}_{145} \mathcal{R}_{123}
$$

$$
\begin{array}{ccll}
\epsilon_{1}-\epsilon_{2} & \epsilon_{2}-\epsilon_{3} & \epsilon_{3}-\delta_{4} & \left(\epsilon_{i}, \epsilon_{i}\right)=1 \\
\bigcirc \bigcirc- & \left(\delta_{i}, \delta_{i}\right)=-1
\end{array} \quad D A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

- Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{3}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}
$$

- Lemma

$$
\Gamma^{(2 \mid 1)}=\mathcal{R} \quad \Gamma^{(3 \mid 2)}=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{L}
$$

- The theorem is specialized as follows:
$\sum \mathcal{L}_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{L}_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{L}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \mathcal{R}_{i_{3}, i_{5}, i_{6}}^{x_{3}, x_{5}, x_{6}}=\sum \mathcal{R}_{x_{3}, x_{5}, x_{6}}^{o_{3}, o_{5}, o_{6}} \mathcal{L}_{x_{2}, x_{4}, i_{6}}^{o_{2}, o_{4}, x_{6}} \mathcal{L}_{x_{1}, i_{4}, i_{5}}^{o_{1}, x_{4}, x_{5}} \mathcal{L}_{i_{1}, i_{2}, i_{3}}^{x_{1}, x_{2}, x_{3}}$
\square This is exactly the tetrahedron equation of [Bazhanov-Sergeev06]:

$$
\mathcal{L}_{123} \mathcal{L}_{145} \mathcal{L}_{246} \mathcal{R}_{356}=\mathcal{R}_{356} \mathcal{L}_{246} \mathcal{L}_{145} \mathcal{L}_{123}
$$

$$
\begin{array}{cccl}
\epsilon_{1}-\epsilon_{2} & \epsilon_{2}-\delta_{3} & \delta_{3}-\epsilon_{4} & \left(\epsilon_{i}, \epsilon_{i}\right)=1 \\
\bigcirc-\otimes & -\otimes & \left(\delta_{i}, \delta_{i}\right)=-1
\end{array} \quad D A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

■ Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}
$$

- Lemma

$$
\Gamma^{(2 \mid 1)}=\mathcal{L}, \quad \Gamma^{(3 \mid 2)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{N}\left(q^{-1}\right), \quad=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\mathcal{R}
$$

- The theorem is specialized as follows:

$$
\begin{aligned}
& \sum \mathcal{N}\left(q^{-1}\right)_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{N}\left(q^{-1}\right)_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{R}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \mathcal{L}_{i_{3}, i_{5}, i_{6}}^{x_{3}, x_{5}, x_{6}} \\
& =\sum \mathcal{L}_{x_{3}, x_{5}, x_{6}}^{o_{3}, o_{5}, o_{6}} \mathcal{R}_{x_{2}, x_{4}, i_{6}}^{o_{2}, o_{4}, x_{6}} \mathcal{N}\left(q^{-1}\right)_{x_{1}, i_{4}, i_{5}}^{o_{1}, x_{4}, x_{5}} \mathcal{N}\left(q^{-1}\right)_{i_{1}, i_{2}, i_{3}}^{x_{1}, x_{2}, x_{3}}
\end{aligned}
$$

\square This gives a new solution to the tetrahedron equation:

$$
\mathcal{N}\left(q^{-1}\right)_{123} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{R}_{246} \mathcal{L}_{356}=\mathcal{L}_{356} \mathcal{R}_{246} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{N}\left(q^{-1}\right)_{123}
$$

The case \bigcirc - Q

$$
\begin{array}{cccl}
\epsilon_{1}-\epsilon_{2} & \epsilon_{2}-\delta_{3} & \delta_{3}-\delta_{4} & \left(\epsilon_{i}, \epsilon_{i}\right)=1 \\
\bigcirc-\bigcirc & \left(\delta_{i}, \delta_{i}\right)=-1
\end{array} \quad D A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right)
$$

■ Root system

$$
\tilde{\Phi}_{\text {even }}^{+}=\left\{\alpha_{1}, \alpha_{3}\right\} \quad \tilde{\Phi}_{\text {iso }}^{+}=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}
$$

- Lemma

$$
\Gamma^{(2 \mid 1)}=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\mathcal{L}, \quad \Gamma^{(3 \mid 2)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{M}\left(q^{-1}\right)
$$

- Previous Theorem [Y20]

$$
\begin{aligned}
& \sum(-1)^{\rho_{1}\left(i_{1} o_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} i_{3} i_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum(-1)^{\rho_{1}\left(o_{1} i_{6}+x_{4}\right)+\rho_{2} x_{2} x_{5}+\rho_{3} o_{3} o_{4}}
\end{aligned}
$$

- Previous Lemma

$$
\Gamma^{(2 \mid 1)}=\Gamma^{(23 \mid 1)}=\Gamma^{(32 \mid 1)}=\mathcal{L}, \quad \Gamma^{(3 \mid 2)}=\Gamma^{(3 \mid 12)}=\Gamma^{(3 \mid 21)}=\mathcal{M}\left(q^{-1}\right)
$$

■ By using $\rho_{1}=0, \rho_{2}=\rho_{3}=1$, the theorem is specialized as follows:

$$
\begin{aligned}
& \sum(-1)^{x_{2} x_{5}+i_{3} i_{4}} \mathcal{M}\left(q^{-1}\right)_{x_{1}, x_{2}, x_{3}}^{o_{1}, o_{2}, o_{3}} \mathcal{M}\left(q^{-1}\right)_{i_{1}, x_{4}, x_{5}}^{x_{1}, o_{4}, o_{5}} \mathcal{L}_{i_{2}, i_{4}, x_{6}}^{x_{2}, x_{4}, o_{6}} \mathcal{L}_{i_{3}, i_{5}, i_{6}}^{x_{3}, x_{5}, x_{4}} \\
& =\sum(-1)^{x_{2} x_{5}+o_{3} o_{4}} \mathcal{L}_{x_{3}, x_{5}, x_{6}}^{o_{3}, o_{5}, o_{6}} \mathcal{L}_{x_{2}, x_{4}, i_{6}}^{o_{2}, o_{4}, x_{6}} \mathcal{N}\left(q^{-1}\right)_{x_{1}, i_{4}, i_{5}}^{o_{1}, x_{4}, x_{5}} \mathcal{M}\left(q^{-1}\right)_{i_{1}, i_{2}, i_{3}}^{x_{1}, x_{2}},
\end{aligned}
$$

- There are "nonlocal" sign factors which can not be eliminated at present.

Concluding remarks: Crystal limit

- Consider non-super cases
\square B: canonical basis
\square i: indices of reduced expression of the longest element of Weyl group
- Lusztig's parametrization: a bijection $b_{\mathbf{i}}: \mathbb{Z}_{\geq 0}^{l} \rightarrow \boldsymbol{B}$ associated with \mathbf{i}
- Transition map: $R_{\mathbf{i}}^{\mathbf{i}^{\prime}}=\left(b_{\mathbf{i}^{\prime}}\right)^{-1} \circ b_{\mathbf{i}}: \mathbb{Z}_{\geq 0}^{l} \rightarrow \mathbb{Z}_{\geq 0}^{l}$
- Transition maps are obtained by transition matrices with $q \rightarrow 0$:

$$
\lim _{q \rightarrow 0} \mathcal{R}(q)_{i, j, k}^{a, b, c}=\delta_{a, i+j-\min (i, k)} \delta_{b, \min (i, k)} \delta_{c, j+k-\min (i, k)}
$$

- A super analog of transition maps is obtained in a similar way.
- Prop [Y20]
$\square \mathcal{L}_{i, j, k}^{a, b, c}=\lim _{q \rightarrow 0} \mathcal{L}(q)_{i, j, k}^{a, b, c}$ gives a non-trivial bijection on $\{0,1\}^{2} \times \mathbb{Z}_{\geq 0}$.
- Non-zero elements are given by

$$
\mathcal{L}_{0,0, k}^{0,0, c}=\mathcal{L}_{1,1, k}^{1,1, c}=\delta_{k, c}, \quad \mathcal{L}_{0,1, k}^{1,0, c}=\delta_{k+1, c}, \quad \mathcal{L}_{1,0,0}^{1,0,0}=1, \quad \mathcal{L}_{1,0, k}^{0,1, c}=\delta_{k-1, c}
$$

$\square \mathcal{N}_{i, j, k}^{a, b, c}=\lim _{q \rightarrow 0}\left(\frac{[b]_{q}!}{[j]_{q}!} \mathcal{N}(q)_{i, j, k}^{a, b, c}\right)$ also gives a non-trivial bijection.

Concluding remarks

- Remark

1. Type B cases give new solutions to the 3 D reflection equations.
2. The crystal limit for $\bigcirc \Longrightarrow$ and $\otimes \Longrightarrow$ take values $0, \pm 1$.

- Summary

1. The $3 \mathrm{D} L$ is characterized as the transition matrix for \bigcirc - \otimes.
2. A new solution to the tetrahedron equation the $3 \mathrm{D} N$ is obtained by considering the transition matrix for $\otimes-\otimes$.
3. Several solutions to the tetrahedron equations are obtained without using any result for quantum coordinate rings (c.f. KOY theorem).

- Outlook

1. Eliminating nonlocal sign factors for $\bigcirc-\otimes-\bigcirc$
2. A super analog of KOY theorem
3. Geometric lifting of a super analog of transition maps
