3D reflection maps from tetrahedron maps

Combinatorial Representation Theory
and Connections with Related Fields@2021/10/19

Akihito Yoneyama
Institute of Physics, University of Tokyo, Komaba

Based on: AY, Math. Phys. Anal. Geom. 2421 (2021)

- Introduction: Reflection maps from Yang-Baxter maps P.3~8

■ Main part: 3D reflection maps from tetrahedron maps P.10~23

- Examples
P. 25 ~ 29
- Birational transition map
- Sergeev's electrical solution

Two-component solution associated with soliton equation

Integrability in 2D

■ Bulk: Yang-Baxter equation

$$
\begin{aligned}
& R_{12}(x) R_{13}(y) R_{23}\left(x^{-1} y\right) \\
& =R_{23}\left(x^{-1} y\right) R_{13}(y) R_{12}(x)
\end{aligned}
$$

- Boundary: Reflection equation

$R_{12}\left(x y^{-1}\right) K_{\mathbf{2}}(x) R_{21}(x y) K_{1}(y)$
$=K_{\mathbf{1}}(y) R_{\mathbf{1 2}}(x y) K_{\mathbf{2}}(x) R_{\mathbf{2 1}}\left(x y^{-1}\right)$
- Problem settings:
- $R, K=$ matrices on linear spaces
- $R, K=$ maps on sets (set-theoretical solution) [Drinfeld92]

Yang-Baxter maps \& reflection maps

- We call set-theoretical solutions to Yang-Baxter equation Yang-Baxter maps, and so on.
■ Yang-Baxter maps have been extensively studied in connection with various topics.
[Veselov07]
- Several reflection maps are constructed
\square via directly solving the reflection equation [Kuniba-Okado-Yamada05]
DLater, these solutions are q-melted by using coideal subalgebras of U_{q}.
[Kuniba-Okado-Y19], [Kusano-Okado20]
- from Yang-Baxter maps [Caudrelier-Zhang14], [Kuniba-Okado19]
\square by ring-theoretic methods
[Smoktunowicz-Vendramin-Weston20]
■ Here, we briefly review a result of [Kuniba-Okado19].

Combinatorial R matrices

■ KR crystal for $A_{n-1}^{(1)}$

- $B^{k, l}=\{$ SST of $k \times l$ rectangular shape with letters from $\{1,2, \ldots, \mathrm{n}\}\}$

पSST: semi-standard tableaux
ㅁ $1 \leq k \leq n-1, l \geq 1$

- $\tilde{e}_{i}, \tilde{f}_{i}: B^{k, l} \rightarrow B^{k, l} \cup\{0\}$ (Kashiwara operators)

\square For $K R$ crystals B_{1}, B_{2}, the actions of Kashiwara operators are also defined on $B_{1} \otimes B_{2}=\left\{b_{1} \otimes b_{2} \mid b_{1} \in B_{1}, b_{2} \in B_{2}\right\}$ and $B_{1} \otimes B_{2}$ is connected.

■ Combinatorial R matrices
\square A map $R_{B_{1}, B_{2}}: B_{1} \otimes B_{2} \rightarrow B_{2} \otimes B_{1}$ given by

$$
R_{B_{1}, B_{2}}\left(\tilde{k}_{i}\left(b_{1} \otimes b_{2}\right)\right)=\tilde{k}_{i}\left(R_{B_{1}, B_{2}}\left(b_{1} \otimes b_{2}\right)\right) \quad\left(\tilde{k}_{i}=\tilde{e}_{i}, \tilde{f}_{i}\right)
$$

is uniquely determined.

- Combinatorial R matrices satisfy YBE from $B_{1} \otimes B_{2} \otimes B_{3}$ to $B_{3} \otimes B_{2} \otimes B_{1}$:

$$
\begin{aligned}
& \left(1 \otimes R_{B_{1}, B_{2}}\right)\left(R_{B_{1}, B_{3}} \otimes 1\right)\left(1 \otimes R_{B_{2}, B_{3}}\right) \\
& =\left(R_{B_{2}, B_{3}} \otimes 1\right)\left(1 \otimes R_{B_{1}, B_{3}}\right)\left(R_{B_{1}, B_{2}} \otimes 1\right)
\end{aligned}
$$

\square The action can be calculated by the tableau product rule.

Combinatorial K matrices

■ We define $\mathrm{V}: B^{k, l} \rightarrow B^{n-k, l}$ by

$$
\begin{aligned}
& \left.\quad b^{\vee}=\begin{array}{|l|l|l|l|}
\hline \overline{\lambda_{l}} & \ldots & \overline{\lambda_{2}} & \overline{\lambda_{1}} \\
\hline
\end{array}\right] n-k \quad \text { for } b=\begin{array}{|l|l|l|l}
\hline \lambda_{1} & \lambda_{2} & \ldots & \lambda_{l} \\
\hline
\end{array} \\
&
\end{aligned}
$$

ㅁ The complement is taken over $\{1,2, \cdots, n\}$.

- Proposition [Kuniba-Okado19]:
\square For a KR crystal B, we have $R_{B^{\vee}, B}\left(b^{\vee} \otimes b\right)=c \otimes c^{\vee}$.
- Definition:

\square Using b and c above, we define the combinatorial K matrix by

$$
K_{B}: B \rightarrow B^{\vee}, b \rightarrow c^{\vee}
$$

■ Theorem: [Kuniba-Okado19]

- The combinatorial R and K matrices satisfy RE from $B_{1} \otimes B_{2} \rightarrow B_{1}^{\vee} \otimes B_{2}^{\vee}$:

$$
R_{B_{2}^{v}, B_{1}^{v}}\left(K_{B_{2}} \otimes 1\right) R_{B_{1}^{v}, B_{2}}\left(K_{B_{1}} \otimes 1\right)=\left(K_{B_{1}} \otimes 1\right) R_{B_{2}^{\vee}, B_{1}}\left(K_{B_{2}} \otimes 1\right) R_{B_{1}, B_{2}}
$$

Key lemma for reflection equation

- Lemma:

$$
\begin{aligned}
& \left(R_{B_{2}^{v}, B_{1}^{v}} R_{B_{1}, B_{2}}\right) R_{B_{2}^{v}, B_{2}}\left(R_{B_{1}^{v}, B_{2}} R_{B_{2}^{v}, B_{1}}\right) R_{B_{1}^{v}, B_{1}} \\
& =R_{B_{1}^{\vee}, B_{1}}\left(R_{B_{2}^{\vartheta}, B_{1}} R_{B_{1}^{\vartheta}, B_{2}}\right) R_{B_{2}^{\vee}, B_{2}}\left(R_{B_{1}, B_{2}} R_{B_{2}^{V}, B_{1}^{\vee}}\right)
\end{aligned}
$$

- Proof:
- By repeated uses of $Y B E$, we have the above equation.

Proof of reflection equation

- Sketch of proof:
\square Input b_{i}, c_{i} on B_{1}, B_{2} and their duals on $B_{1}^{\vee}, B_{2}^{\vee}$.
$\square \square$ Use $R_{B^{\vee}, B}\left(b^{\vee} \otimes b\right)=c \otimes c^{\mathrm{V}}$.
\square Use $R_{B_{1}, B_{2}}\left(b_{1} \otimes b_{2}\right)=c_{2} \otimes c_{1} \Rightarrow R_{B_{2}^{\vee}, B_{1}^{\vee}}\left(b_{2}^{\vee} \otimes b_{1}^{\vee}\right)=c_{1}^{\vee} \otimes c_{2}^{\vee}$.
\square Just viewing the right parts of both sides, we then obtain RE.
-because the above equation is equal to the direct product of RE for ${ }^{\forall} b_{i}, c_{i}$.

Outline

- Introduction: Reflection maps from Yang-Baxter maps P.3~8

■ Main part: 3D reflection maps from tetrahedron maps P.10~23

- Examples
P. $25 \sim 29$
- Birational transition map
- Sergeev's electrical solution

Two-component solution associated with soliton equation

Integrability in 3D

- Bulk: Tetrahedron equation
- Boundary: 3D reflection equation

$$
\begin{aligned}
& \mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346} \\
& =\mathbf{R}_{346} \mathbf{R}_{126} \mathbf{R}_{135} \mathbf{R}_{245}
\end{aligned}
$$

[Zamolodchikov80]

$\mathbf{R}_{489} \mathbf{J}_{3579} \mathbf{R}_{269} \mathbf{R}_{258} \mathbf{J}_{1678} \mathbf{J}_{1234} \mathbf{R}_{456}$
$=\mathbf{R}_{456} \mathbf{J}_{1234} \mathbf{J}_{1678} \mathbf{R}_{258} \mathbf{R}_{269} \mathbf{J}_{3579} \mathbf{R}_{489}$ [Isaev-Kulish97]

- Tetrahedron and 3D reflection equation are conditions for factorization of string scattering amplitude in 2+1D.

	Bulk	Boundary
2D	Yang-Baxter eq.	Reflection eq.
3D	Tetrahedron eq.	3D Reflection eq.

Motivation \& Aim

■ Several tetrahedron maps are known although less systematically than Yang-Baxter maps.

- In the context of the local YBE [Sergeev98]
\square Transition maps of Lusztig's parametrization of the canonical basis of $U_{q}\left(A_{2}\right)$ and their geometric liftings [Kuniba-Okado12]
\square By using some KP tau functions [Kassotakis-Nieszporski-Papageorgiou-Tongas 19]
- On the other hand, there are very few known 3D reflection maps.
- Transition maps of Lusztig's parametrization of the canonical basis of $U_{q}\left(B_{2}\right)$ and $U_{q}\left(C_{2}\right)$, and their geometric lifting [Kuniba-Okado12]
- Aim: Obtain 3D reflection maps from known tetrahedron maps
- Motivation:
- Some 2D reflection maps are constructed from known Yang-Baxter maps.

I It is known that (2) is constructed from (1) associated with folding the Dynkin diagram of A_{3} into one of B_{2}. [Berenstein-Zelevinsky01], [Lusztig11]

Tetrahedron maps

- Definition:

Let R: $X^{3} \rightarrow X^{3}$ ($X:$ an arbitrary set) denote a map.
\square We call \mathbf{R} tetrahedron map if it satisfies the tetrahedron equation on X^{6} :

$$
\mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346}=\mathbf{R}_{346} \mathbf{R}_{126} \mathbf{R}_{135} \mathbf{R}_{245}\left(=: \mathbf{T}_{123456}\right) \quad \cdots(*)
$$

\square We call \mathbf{T} the tetrahedral composite of the tetrahedron map \mathbf{R}.
\square We call \mathbf{R} involutive if $\mathbf{R}^{2}=\mathrm{id}$ and symmetric if $\mathbf{R}_{123}=\mathbf{R}_{321}$.

- Remark:
\square For involutive and symmetric tetrahedron maps, (*) corresponds to the usual tetrahedron equation.

- Definition:

Let J: $X^{4} \rightarrow X^{4}$ denote a map.
\square We set a tetrahedron map by $\mathbf{R}: X^{3} \rightarrow X^{3}$.

- We call J 3D reflection map if it satisfies the 3D reflection equation on X^{9} :

$$
\mathbf{R}_{489} \mathbf{J}_{3579} \mathbf{R}_{269} \mathbf{R}_{258} \mathbf{J}_{1678} \mathbf{J}_{1234} \mathbf{R}_{456}=\mathbf{R}_{456} \mathbf{J}_{1234} \mathbf{J}_{1678} \mathbf{R}_{258} \mathbf{R}_{269} \mathbf{J}_{3579} \mathbf{R}_{489}
$$

Boundarization

■ We set the subset of X^{6} by $Y=\left\{\left(x_{1}, \cdots, x_{6}\right) \mid x_{2}=x_{3}, x_{5}=x_{6}\right\}$.
\square We set $\phi: X^{4} \rightarrow Y$ by $\phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{2}, x_{3}, x_{4}, x_{4}\right)$ (embedding)
\square We set $\varphi: Y \rightarrow X^{4}$ by $\varphi\left(x_{1}, x_{2}, x_{2}, x_{3}, x_{4}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ (projection)
■ Definition:
\square Let R: $X^{3} \rightarrow X^{3}$ denote a tetrahedron map and \mathbf{T} its tetrahedral composite.
\square We call \mathbf{R} boundarizable if the following condition is satisfied:

$$
\mathbf{x} \in Y \Rightarrow \mathbf{T}(\mathbf{x}) \in Y
$$

\square In that case, we define the boundarization $\mathbf{J}: X^{4} \rightarrow X^{4}$ of \mathbf{R} by

$$
\mathbf{J}(\mathbf{x})=\varphi(\mathbf{T}(\phi(\mathbf{x})))
$$

Example for boundarization

- We set the tetrahedron map $\mathbb{R}: \mathbb{R}_{>0}^{3} \rightarrow \mathbb{R}_{>0}^{3}$ by

$$
\mathbf{R}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\tilde{x_{1}}, \tilde{x_{2}}, \tilde{x_{3}}\right)=\left(\frac{x_{1} x_{2}}{x_{1}+x_{3}}, x_{1}+x_{3}, \frac{x_{2} x_{3}}{x_{1}+x_{3}}\right)
$$

■ Let's act tetrahedral composite $\mathbf{T}=\mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346}$ on $\boldsymbol{x} \in Y$.

$$
\begin{aligned}
&\left(x_{1}, x_{2}, \underline{x_{2}}, \underline{x_{3}}, x_{4}, \underline{x_{4}}\right) \\
& \stackrel{\mathbf{R}_{346}}{\mapsto}\left(\underline{x_{1}}, \underline{x_{2}}, \frac{x_{2} x_{3}}{x_{2}+x_{4}}, x_{2}+x_{4}, x_{4}, \frac{x_{3} x_{4}}{\underline{x_{2}+x_{4}}}\right) \\
& \stackrel{\mathbf{R}_{126}}{\mapsto}\left(\frac{x_{1} x_{2}\left(x_{2}+x_{4}\right)}{\underline{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}}, x_{1}+\frac{x_{3} x_{4}}{x_{2}+x_{4}}, \frac{x_{2} x_{3}}{x_{2}+x_{4}}, x_{2}+x_{4}, x_{4}, \frac{x_{2} x_{3} x_{4}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}\right)
\end{aligned}
$$

Example for boundarization

$$
\begin{aligned}
& \stackrel{\mathbf{R}_{135}}{\mapsto}\left(\frac{x_{1} x_{2}^{2} x_{3}}{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}, x_{1}+\frac{x_{3} x_{4}}{x_{2}+x_{4}}, \frac{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}\right. \\
& \left., \underline{x_{2}+x_{4}}, \frac{x_{2} x_{3} x_{4}\left(x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)\right)}{\underline{\left(x_{2}+x_{4}\right)\left(x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}\right)}}, \frac{x_{2} x_{3} x_{4}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}\right) \\
& \stackrel{\mathbf{R}_{245}}{\longmapsto}\left(\frac{x_{1} x_{2}^{2} x_{3}}{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}, \frac{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}, \frac{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}\right. \\
& \left., \frac{\left(x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)\right)^{2}}{x_{3} x_{4}^{2}+x_{1}\left(x_{2}+x_{4}\right)^{2}}, \frac{x_{2} x_{3} x_{4}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}, \frac{x_{2} x_{3} x_{4}}{x_{3} x_{4}+x_{1}\left(x_{2}+x_{4}\right)}\right) \in Y
\end{aligned}
$$

- Then, the boundarization $\mathrm{J}: \mathbb{R}_{>0}^{4} \rightarrow \mathbb{R}_{>0}^{4}$ is obtained as follows:

$$
\begin{aligned}
& \mathbf{J}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(\frac{x_{1} x_{2}^{2} x_{3}}{y_{1}}, \frac{y_{1}}{y_{2}}, \frac{y_{2}^{2}}{y_{1}}, \frac{x_{2} x_{3} x_{4}}{y_{2}}\right) \\
& y_{1}=x_{1}\left(x_{2}+x_{4}\right)^{2}+x_{3} x_{4}^{2}, \quad y_{2}=x_{1}\left(x_{2}+x_{4}\right)+x_{3} x_{4}
\end{aligned}
$$

Main theorem

- Theorem:
\square Let R: $X^{3} \rightarrow X^{3}$ denote an involutive, symmetric and boundarizable tetrahedron map, and $\mathrm{J}: X^{4} \rightarrow X^{4}$ its boundarization.
- Then they satisfy 3D reflection equation.

■ Sketch of Proof:

- Cut the following identiy on X^{15} into half:

Key lemma for main theorem

■ Lemma:
Let R: $X^{3} \rightarrow X^{3}$ denote an involutive and symmetric tetrahedron map.
Then we have the following identiy on X^{15} :

$$
\begin{aligned}
& \left(\mathbf{R}_{489} \mathbf{R}_{\overline{4} \overline{9} \overline{9}}\right)\left(\mathbf{R}_{579} \mathbf{R}_{359} \mathbf{R}_{35 \overline{9}} \mathbf{R}_{\overline{5} 7 \overline{9}}\right)\left(\mathbf{R}_{26 \overline{9}} \mathbf{R}_{\overline{2} \overline{6} 9}\right)\left(\mathbf{R}_{2 \overline{5} 8} \mathbf{R}_{\overline{2} 5 \overline{8}}\right) \\
& \times\left(\mathbf{R}_{\overline{6} 7 \overline{8}} \mathbf{R}_{16 \overline{8}} \mathbf{R}_{1 \overline{6} 8} \mathbf{R}_{678}\right)\left(\mathbf{R}_{234} \mathbf{R}_{1 \overline{2} 4} \mathbf{R}_{12 \overline{4}} \mathbf{R}_{\overline{2} 3 \overline{4}}\right)\left(\mathbf{R}_{\overline{4} 5 \overline{6}} \mathbf{R}_{456}\right) \\
& =\left(\mathbf{R}_{456} \mathbf{R}_{\overline{4} 5 \overline{6}}\right)\left(\mathbf{R}_{234} \mathbf{R}_{1 \overline{2} 4} \mathbf{R}_{12 \overline{4}} \mathbf{R}_{\overline{2} 3 \overline{4}}\right)\left(\mathbf{R}_{\overline{6} 7 \overline{8}} \mathbf{R}_{16 \overline{\overline{8}}} \mathbf{R}_{1 \overline{6} 8} \mathbf{R}_{678}\right) \\
& \times\left(\mathbf{R}_{\overline{2} 5 \overline{\overline{8}}} \mathbf{R}_{2 \overline{5} 8}\right)\left(\mathbf{R}_{\overline{2} \overline{6} 9} \mathbf{R}_{26 \overline{9}}\right)\left(\mathbf{R}_{579} \mathbf{R}_{3 \overline{5} 9} \mathbf{R}_{35 \overline{9}} \mathbf{R}_{\overline{5} 7 \overline{9}}\right)\left(\mathbf{R}_{\overline{4} \overline{8} \overline{9}} \mathbf{R}_{489}\right)
\end{aligned}
$$

- : mirrored space
\square By repeated uses of $T E$, we have the above equation.

Figure for the identity on X^{15}

Figure for 3D reflection equation

Proof of main theorem

- Sketch of proof:
\square Let \mathbf{T} denote the tetrahedral composite of \mathbf{R}.
\square By using \mathbf{T}, the identify in the previous lemma is written as follows:

$$
\begin{align*}
& \left(\mathbf{R}_{489} \mathbf{R}_{\overline{4} \overline{8} \overline{9}}\right) \mathbf{T}_{35 \overline{5} 79 \overline{9}}\left(\mathbf{R}_{26 \overline{9}} \mathbf{R}_{\overline{2} \overline{6} 9}\right)\left(\mathbf{R}_{2 \overline{5} 8} \mathbf{R}_{\overline{2} 5 \overline{8}}\right) \mathbf{T}_{16 \overline{6} 78 \overline{8} \overline{\mathbf{T}_{12 \overline{2}} 4 \overline{4}}\left(\mathbf{R}_{\overline{4} \overline{\overline{6}}} \mathbf{R}_{456}\right)} \tag{*}\\
& =\left(\mathbf{R}_{456} \mathbf{R}_{\overline{4} 5 \overline{6}}\right) \mathbf{T}_{12 \overline{2} 34 \overline{4}} \mathbf{T}_{16 \overline{6} 78 \overline{8}}\left(\mathbf{R}_{\overline{2} 5 \overline{8}} \mathbf{R}_{2 \overline{5} 8}\right)\left(\mathbf{R}_{\overline{2} \overline{6} 9} \mathbf{R}_{26 \overline{9}}\right) \mathbf{T}_{35 \overline{5} 79 \overline{9}}\left(\mathbf{R}_{\overline{4} \overline{9} \overline{9}} \mathbf{R}_{489}\right)
\end{align*}
$$

- Let's act both sides of (*) on "mirrored" inputs:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}, x_{6}, x_{6}, x_{7}, x_{8}, x_{8}, x_{9}, x_{9}\right) \\
& \in \underline{1} \times 2 \times \overline{2} \times \underline{3} \times 4 \times \overline{4} \times 5 \times \overline{5} \times 6 \times \overline{6} \times \underline{7} \times 8 \times \overline{8} \times 9 \times \overline{9}
\end{aligned}
$$

\square We can verify that all \mathbf{T} in (*) receive elements of Y.
\square For example, \mathbf{R}_{456} and $\mathbf{R}_{\overline{4} \overline{5} \overline{6}}$ in __ output the same, so $\mathbf{T}_{12 \overline{2} 34 \overline{4}}$ receive an element of Y.
\square Then, all \mathbf{T} in (*) satisfy $\mathbf{T}=\phi \circ \mathbf{J} \circ \varphi$ by the definition of \mathbf{J}.
\square As a matter of fact, we expect $\mathbf{T} \sim \mathbf{J J}$ rather than $\mathbf{T} \sim \mathbf{J}$ in view of the previous figures.

Proof of main theorem

- Sketch of proof:
\square By applying $\mathbf{T}_{i j \bar{j} k l \bar{l}} \mapsto P_{j \bar{j}} P_{i l} \mathbf{J}_{i j k l} \mathbf{J}_{\bar{i} \bar{j} \bar{k} \bar{l}}$ (cutting and reconnection), to the previous equation, we obtain

$$
\begin{aligned}
& \left(\mathbf{R}_{489} \mathbf{R}_{\overline{4} \overline{8} \overline{9}}\right)\left(P_{5 \overline{5}} P_{99} \mathbf{J}_{3579} \mathbf{J}_{\overline{3} \overline{5} \overline{9}}\right)\left(\mathbf{R}_{26 \overline{9}} \mathbf{R}_{\overline{2} \overline{6} 9}\right)\left(\mathbf{R}_{2 \overline{5} 8} \mathbf{R}_{\overline{2} 5 \overline{8}}\right) \\
& \times\left(P_{6 \overline{6}} P_{8 \overline{8}} \mathbf{J}_{1678} \mathbf{J}_{\overline{1} \overline{6} \overline{7} \overline{8}}\right)\left(P_{2 \overline{2}} P_{4 \overline{4}} \mathbf{J}_{1234} \mathbf{J}_{\overline{1} \overline{2} \overline{3} \overline{4}}\right)\left(\mathbf{R}_{\overline{4} 5 \overline{6}} \mathbf{R}_{456}\right) \\
& =\left(\mathbf{R}_{456} \mathbf{R}_{\overline{4} \overline{5} \overline{6}}\right)\left(P_{2 \overline{2}} P_{4 \overline{4}} \mathbf{J}_{1234} \mathbf{J}_{\overline{1} \overline{2} \overline{3} \overline{4}}\right)\left(P_{6 \overline{6}} P_{8 \overline{8}} \mathbf{J}_{1678} \mathbf{J}_{\overline{1} \overline{6} \bar{\gamma} \overline{8}}\right) \\
& \times\left(\mathbf{R}_{\overline{2} 5 \overline{8}} \mathbf{R}_{2 \overline{5} 8}\right)\left(\mathbf{R}_{\overline{2} \overline{6} 9} \mathbf{R}_{2 \overline{9}}\right)\left(P_{5 \overline{5}} P_{9 \overline{9}} \mathbf{J}_{3579} \mathbf{J}_{\overline{3} \overline{5} \overline{9} \overline{9}}\right)\left(\mathbf{R}_{\overline{4} \overline{8} \overline{9}} \mathbf{R}_{489}\right) .
\end{aligned}
$$

\square By eliminating $P_{i \bar{l}}$, we obtain the direct product of 3 DRE. $\quad(15+1+1+1=9+9)$

Overview of analogous results

- 2D case
- K_{B} from $R_{B^{\vee}, B}$:

$$
K_{B}: B \rightarrow B^{\vee}, b \rightarrow c^{\vee} \quad R_{B^{\vee}, B}\left(b^{\vee} \otimes b\right)=c \otimes c^{\vee}
$$

- Key lemma:

$$
\begin{aligned}
& \left(R_{B_{2}^{V}, B_{1}^{v}} R_{B_{1}, B_{2}}\right) R_{B_{2}^{V}, B_{2}}\left(R_{B_{1}^{\vartheta}, B_{2}} R_{B_{2}^{v}, B_{1}}\right) R_{B_{1}^{\vee}, B_{1}} \\
& =R_{B_{1}^{\vee}, B_{1}}\left(R_{B_{2}^{\vee}, B_{1}} R_{B_{1}^{\vee}, B_{2}}\right) R_{B_{2}^{\vee}, B_{2}}\left(R_{B_{1}, B_{2}} R_{B_{2}^{\vee}, B_{1}^{\vee}}\right)
\end{aligned}
$$

■ 3D case

- J from R:

$$
\mathbf{J}(\mathbf{x})=\varphi(\mathbf{T}(\phi(\mathbf{x}))) \quad \mathbf{T}=\mathbf{R}_{245} \mathbf{R}_{135} \mathbf{R}_{126} \mathbf{R}_{346}
$$

- Key lemma:

$$
\begin{aligned}
& \left(\mathbf{R}_{489} \mathbf{R}_{\overline{4} \overline{\overline{9}}}\right)\left(\mathbf{R}_{579} \mathbf{R}_{359} \mathbf{R}_{35 \overline{9}} \mathbf{R}_{\overline{5} 7 \overline{9}}\right)\left(\mathbf{R}_{26 \overline{9}} \mathbf{R}_{\overline{2} \overline{6} 9}\right)\left(\mathbf{R}_{258} \mathbf{R}_{\overline{2} 5 \overline{8}}\right) \\
& \times\left(\mathbf{R}_{\overline{6} 7 \overline{8}} \mathbf{R}_{16 \overline{8}} \mathbf{R}_{1 \overline{6} 8} \mathbf{R}_{678}\right)\left(\mathbf{R}_{234} \mathbf{R}_{1 \overline{2} 4} \mathbf{R}_{12 \overline{4}} \mathbf{R}_{\overline{2} 3 \overline{4}}\right)\left(\mathbf{R}_{\overline{4} 5 \overline{6}} \mathbf{R}_{456}\right) \\
& =\left(\mathbf{R}_{456} \mathbf{R}_{\overline{4} 5 \overline{6}}\right)\left(\mathbf{R}_{234} \mathbf{R}_{1 \overline{1} 4} \mathbf{R}_{12 \overline{4}} \mathbf{R}_{\overline{2} 3 \overline{4}}\right)\left(\mathbf{R}_{\overline{6} 7 \overline{8}} \mathbf{R}_{16 \overline{8}} \mathbf{R}_{1 \overline{6} 8} \mathbf{R}_{678}\right) \\
& \times\left(\mathbf{R}_{\overline{2} 5 \overline{8}} \mathbf{R}_{2 \overline{5} 8}\right)\left(\mathbf{R}_{\overline{2} \overline{9} 9} \mathbf{R}_{26 \overline{9}}\right)\left(\mathbf{R}_{579} \mathbf{R}_{359} \mathbf{R}_{35 \overline{9}} \mathbf{R}_{57 \overline{9}}\right)\left(\mathbf{R}_{\overline{4} \overline{9} \overline{9}} \mathbf{R}_{489}\right)
\end{aligned}
$$

Outline

- Introduction: Reflection maps from Yang-Baxter maps P.3~8

■ Main part: 3D reflection maps from tetrahedron maps P.10~23

- Examples
P. $25 \sim 29$
- Birational transition map
- Sergeev's electrical solution
- Two-component solution associated with soliton equation

Example1: birational transition map

■ We set $\mathbb{R}: \mathbb{R}_{>0}^{3} \rightarrow \mathbb{R}_{>0}^{3}$ by

$$
\mathbf{R}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\tilde{x_{1}}, \tilde{x_{2}}, \tilde{x_{3}}\right)=\left(\frac{x_{1} x_{2}}{y}, y, \frac{x_{2} x_{3}}{y}\right) \quad y=x_{1}+x_{3}
$$

\square This map is characterized as the transition map of parametrizations of the positive part of $S L_{3}$:

$$
G_{1}\left(x_{3}\right) G_{2}\left(x_{2}\right) G_{1}\left(x_{1}\right)=G_{2}\left(\tilde{x_{1}}\right) G_{1}\left(\tilde{x_{2}}\right) G_{2}\left(\tilde{x_{3}}\right) \quad G_{i}(x)=1+x E_{i, i+1}
$$

\square Actually, the transition map for $S L_{4}$ is the tetrahedral composite of \mathbf{R} and we have TE for \mathbf{R} by considering \mathbf{T} in two ways. [Kuniba-Okado12]

$$
\begin{gathered}
\frac{G_{1}\left(x_{6}\right)}{=G_{2}}\left(\frac{\left.G_{3}\left(x_{5}\right) \underline{G_{2}\left(x_{4}\right) G_{1}\left(x_{3}\right)} \underline{\tilde{x}_{1}\left(\tilde{x}_{2}\right) G_{3}\left(x_{2}\right)} \tilde{x}_{3}\right) G_{2}\left(x_{1}\right)}{\left(\tilde{x_{4}}\right) G_{1}\left(\tilde{x_{5}}\right) G_{3}\left(\tilde{x_{6}}\right)}\right. \\
\mathbf{T}:\left(x_{1}, \cdots, x_{6}\right) \mapsto\left(\tilde{x}_{1}, \cdots, \tilde{x}_{6}\right)
\end{gathered}
$$

\square This tetrahedron map was also obtained in the context of the local YBE and by considering AKP tau function.
[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]
\square We can verify \mathbf{R} is involutive, symmetric and boundarizable.

Example1: birational transition map

- The associated 3D reflection map J: $\mathbb{R}_{>0}^{4} \rightarrow \mathbb{R}_{>0}^{4}$ is calculated as follows:

$$
\begin{aligned}
& \mathbf{J}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(\frac{x_{1} x_{2}^{2} x_{3}}{y_{1}}, \frac{y_{1}}{y_{2}}, \frac{y_{2}^{2}}{y_{1}}, \frac{x_{2} x_{3} x_{4}}{y_{2}}\right) \\
& y_{1}=x_{1}\left(x_{2}+x_{4}\right)^{2}+x_{3} x_{4}^{2}, \quad y_{2}=x_{1}\left(x_{2}+x_{4}\right)+x_{3} x_{4}
\end{aligned}
$$

\square Actually, (\mathbf{R}, \mathbf{J}) is a known solution to 3D reflection equation.
[Kuniba-Okado12]
$\square \mathrm{J}$ is characterized as the transition map of parametrizations of the positive part of $S P_{4}$:

$$
\begin{gathered}
H_{1}\left(x_{4}\right) H_{2}\left(x_{3}\right) H_{1}\left(x_{2}\right) H_{2}\left(x_{1}\right)=H_{2}\left(\tilde{x_{1}}\right) H_{1}\left(\tilde{x_{2}}\right) H_{2}\left(\tilde{x_{3}}\right) H_{1}\left(\tilde{x_{4}}\right) \\
H_{1}(x)=\left(\begin{array}{llll}
1 & x & & \\
& 1 & & \\
& & 1 & x \\
& & & 1
\end{array}\right) \quad H_{2}(x)=\left(\begin{array}{llll}
1 & & & \\
& 1 & x & \\
& & 1 & \\
& & & 1
\end{array}\right) \quad \begin{array}{l}
H_{1}(x)=G_{1}(x) G_{3}(x) \\
H_{2}(x)=G_{2}(x)
\end{array}
\end{gathered}
$$

\square This correspondence is a consequence from folding the Dynkin diagram of A_{3} into one of C_{2}.

Example2: Sergeev's electrical solution

■ For $\lambda \in \mathbb{C}$, we set the tetrahedron map $\mathbf{R}(\lambda): \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ by

$$
\mathbf{R}(\lambda):\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\tilde{x_{1}}, \tilde{x_{2}}, \tilde{x_{3}}\right)=\left(\frac{x_{1} x_{2}}{y}, y, \frac{x_{2} x_{3}}{y}\right) \quad y=x_{1}+x_{3}+\lambda x_{1} x_{2} x_{3}
$$

- This solution was obtained in the context of the local YBE and by considering BKP tau function.
$\square \mathbf{R}(\lambda=1)$ is also characterized as the relation which elements of the positive part of electorical Lie groups of type A satisfy: [Lam-Pylyavskyy15]

$$
\begin{aligned}
& \hat{G}_{1}\left(x_{3}\right) \hat{G}_{2}\left(x_{2}\right) \hat{G}_{1}\left(x_{1}\right) \\
& =\hat{G}_{2}\left(\tilde{x_{1}}\right) \hat{G}_{1}\left(\tilde{x_{2}}\right) \hat{G}_{2}\left(\tilde{x_{3}}\right)
\end{aligned} \quad \hat{G}_{1}(x)=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right) \quad \hat{G}_{2}(x)=\left(\begin{array}{cc}
1 & \\
x & 1
\end{array}\right)
$$

\square We can verify $\mathbf{R}(\lambda)$ is involutive, symmetric and boundarizable.
■ The associated 3D reflection map $\mathbf{J}(\lambda): \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is calculated as follows:

$$
\begin{aligned}
& \mathbf{J}(\lambda):\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(\frac{x_{1} x_{2}^{2} x_{3}}{y_{1}}, \frac{y_{1}}{y_{2}}, \frac{y_{2}^{2}}{y_{1}}, \frac{x_{2} x_{3} x_{4}}{y_{2}}\right) \\
& y_{1}=x_{1}\left(x_{2}+x_{4}\right)\left(x_{2}+x_{4}+2 \lambda x_{2} x_{3} x_{4}\right)+x_{3} x_{4}^{2} \\
& y_{2}=x_{1}\left(x_{2}+x_{4}+2 \lambda x_{2} x_{3} x_{4}\right)+x_{3} x_{4}
\end{aligned}
$$

Example3: Two component solution

- We set the tetrahedron map $\mathbf{R}:\left(\mathbb{C}^{2}\right)^{3} \rightarrow\left(\mathbb{C}^{2}\right)^{3}$ by

$$
\left.\begin{array}{rl}
\mathbf{R} & :\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}},\binom{x_{3}}{y_{3}}\right) \\
\mapsto\left(\left(\begin{array}{c}
\frac{x_{1} x_{2}}{x_{1}+x_{3}} \\
\\
\frac{\left(x_{1}+x_{3}\right) y_{1} y_{2}}{x_{1} y_{1}+x_{3} y_{3}}
\end{array}\right),\binom{x_{1}+x_{3}}{\frac{x_{1} y_{1}+x_{3} y_{3}}{x_{1}+x_{3}}},\binom{\frac{x_{2} x_{3}}{x_{1}+x_{3}}}{\frac{\left(x_{1}+x_{3}\right) y_{2} y_{3}}{x_{1} y_{1}+x_{3} y_{3}}}\right.
\end{array}\right) .
$$

\square This solution was obtained by considering modified KP tau function. [Kassotakis-Nieszporski-Papageorgiou-Tongas19]
\square This gives the previous birational transition map when we set $y_{i}=1$.
\square We can verify \mathbf{R} is involutive, symmetric and boundarizable.

Example3: Two component solution

■ The associated 3D reflection map J: $\left(\mathbb{C}^{2}\right)^{4} \rightarrow\left(\mathbb{C}^{2}\right)^{4}$ is calculated as follows:

$$
\begin{gathered}
\mathbf{J}:\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}},\binom{x_{3}}{y_{3}},\binom{x_{4}}{y_{4}}\right) \\
\mapsto\left(\left(\begin{array}{c}
\frac{x_{1} x_{2}^{2} x_{3}}{z_{1}} \\
\mapsto\binom{\frac{z_{1}}{z_{2}}}{\frac{y_{1} y_{2}^{2} y_{3} z_{1}}{w_{1}}},\binom{\frac{z_{2}^{2}}{z_{1}}}{\frac{z_{2} w_{1}}{z_{1} w_{2}}},\binom{\frac{x_{2} x_{3} x_{4}}{z_{2}}}{\frac{z_{1} w_{2}^{2}}{z_{2}^{2} w_{1}}},\binom{y_{2} y_{3} y_{4} z_{2}}{w_{2}} \\
z_{1}=x_{1}\left(x_{2}+x_{4}\right)^{2}+x_{3} x_{4}^{2} \\
z_{2}=x_{1}\left(x_{2}+x_{4}\right)+x_{3} x_{4} \\
w_{1}=x_{1} y_{1}\left(x_{2} y_{2}+x_{4} y_{4}\right)^{2}+x_{3} x_{4}^{2} y_{3} y_{4}^{2} \\
w_{2}=x_{1} y_{1}\left(x_{2} y_{2}+x_{4} y_{4}\right)+x_{3} x_{4} y_{3} y_{4}
\end{array}\right.\right.
\end{gathered}
$$

Concluding remarks

- Summary:
- We present a method for obtaining 3D reflection maps by using known tetrahedron maps. The theorem is an analog of the results in 2D.
- Our method is a kind of generalization of the relation by Berenstein and Zelevinsky and gives 3D interpretation to their relation.
- By applying our theorem to known tetrahedron maps, we obtain several 3D reflection maps which include new solutions.
- Remark:
- Our theorem can be extended to inhomogeneous cases, that is, the case tetrahedron maps are defined on direct product of different sets.

