Tetrahedron equation from PBW bases of the nilpotent subalgebra of quantum superalgebras

Mathsci Freshman Seminar@2021/02/13

Akihito Yoneyama
Institute of Physics, University of Tokyo, Komaba

Based on: AY, arXiv: 2012.13385

Outline

- Yang-Baxter equation in 2D integrability
\square Commuting transfer matrix
\square Integrable hamiltonian
\square Drinfeld-Jimbo quantum affine algebra
- Tetrahedron equation in 3D integrability
- 3DR and 3DL
- Matrix product solution to Yang-Baxter equation
- Kuniba-Okado-Yamada theorem
- Main part:
- PBW bases of quantum superalgebras of type A of rank 2
- Concluding remarks

Yang-Baxter equation and R matrices

- Matrix equation on $V_{1} \otimes V_{2} \otimes V_{3}$ (V_{i} : linear space)

$$
R_{12}\left(x y^{-1}\right) R_{13}(x) R_{23}(y)=R_{23}(y) R_{13}(x) R_{12}\left(x y^{-1}\right)
$$

- $R(z): W_{1} \otimes W_{2} \rightarrow W_{1} \otimes W_{2}$ (W_{i} : linear space)
- $R_{i j}(z)$ acts non-trivially only on $V_{i} \otimes V_{j}$.
- Graphical notation:

$$
R(z)|i\rangle \otimes|j\rangle=\sum_{a, b} R(z)_{i, j}^{a, b}|a\rangle \otimes|b\rangle
$$

$$
R(z)_{i, j}^{a, b}=i \stackrel{\natural_{j}^{z}}{\stackrel{b}{z}} a
$$

$\sum_{a_{2}} R(z)_{a_{1}, b_{1}}^{a_{2}, b_{2}} R(z)_{a_{2}, c_{1}}^{a_{3}, c_{2}}$

Commuting transfer matrix

- From Yang-Baxter equation, we have the following:
- Proposition:
- We set the transfer matrix $\tau(z): \mathrm{V}^{\otimes L} \rightarrow \mathrm{~V}^{\otimes L}$ by $\quad V_{i}=V$
- Then, we have

$$
[\tau(x), \tau(y)]=0 \quad\left({ }^{\forall} x, y \in \mathbb{C}\right)
$$

- Proof:
\square For the following eq, multiply $R_{a b}\left(x y^{-1}\right)^{-1}$ and take trace on $V_{a} \otimes V_{b}$:

1D integrable hamiltonian

- A lot of families of integrable one-dimensional quantum spin chains are constructed via commutativty of the transfer matrix.
- The following \mathcal{H} gives one-dimensional quantum spin chain

$$
\mathcal{H}:=\left.\frac{\mathrm{d}}{\mathrm{~d} z}(\log \tau(z))\right|_{z=1}
$$

- This has a nearest-neighbor interaction (physical):

$$
\mathcal{H}=\sum_{i} \mathcal{H}_{i, i+1} \quad \mathcal{H}_{i, i+1}: V_{i} \otimes V_{i+1} \rightarrow V_{i} \otimes V_{i+1}
$$

- Integrability: the transfer matrix gives conserved quantities:

$$
\begin{aligned}
{[\tau(x), \tau(y)]=0 \quad\left({ }^{\forall} x, y \in \mathbb{C}\right) \quad \longrightarrow \quad } & {[\mathcal{H}, \tau(y)]=0 \quad{ }^{\forall} y \in \mathbb{C} } \\
& \tau(y)=\underline{\tau(1)}+\underline{\tau^{\prime}(1) y}+\cdots
\end{aligned}
$$

- All eigenvalues of $\tau(z)$ are obtained by Bethe ansatz for large classes of R matrices.

Reps of quantum algebra \& R matrices

- R matrices are systematically (infinitely many) constructed via irreps of Drinfeld-Jimbo quantum affine algebra $U_{q}(g)$.
- g : affine Lie algebra $A_{n}^{(1)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1)}, \ldots$
- $U_{q}(g)$ is one-parametric generalization of g, and reduces to g with $q \rightarrow 1$

■ $\left(V_{1}, \pi_{z}^{(1)}\right),\left(V_{2}, \pi_{z}^{(2)}\right)$: irreps of $U_{q}(g) \quad z$: spectral parameter

- Example: Kirillov-Reshetikhin module

■ If $\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}, \pi_{y}^{(2)} \otimes \pi_{x}^{(1)}$ are irreducible, a linear map $\check{R}(z)$ given by

$$
\left(\pi_{y}^{(2)} \otimes \pi_{x}^{(1)}\right)(\Delta(g)) \check{R}(x / y)=\check{R}(x / y)\left(\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}\right)(\Delta(g)) \quad{ }^{\forall} g \in U_{q}(X)
$$

is uniquely determined by Schur's Lemma.
■ $R(z)=P \check{R}(z)$ gives a solution to the Yang-Baxter equation.

- "linearization" method for the Yang-Baxter equation. $\quad P|i\rangle \otimes|j\rangle=|j\rangle \otimes|i\rangle$
- Point: characterization \neq explicit formula

Explicit formula for R matrices

- For some $U_{q}(g)$ and their representations, there exist explicit formulae for R matrices from three dimensional integrability.
- Example:
- $U_{q}(g)=U_{q}\left(A_{n-1}^{(1)}\right)$

ㅁ Theorem:

$$
R(z)_{\boldsymbol{i}, \boldsymbol{j}}^{\boldsymbol{a}, \boldsymbol{b}}=\operatorname{Tr}_{F}\left(z^{\mathbf{h}} \mathcal{R}_{i_{1}, j_{1}}^{a_{1}, b_{1}} \cdots \mathcal{R}_{i_{n}, j_{n}}^{a_{n}, b_{n}}\right)=
$$

satisfies the intertwining relation

$$
\left(\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}\right)\left(\Delta^{\mathrm{op}}(g)\right) R(x / y)=R(x / y)\left(\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}\right)(\Delta(g)) \quad{ }^{\forall} g \in U_{q}(X)
$$

$\square \mathcal{R}$ is the solution to the tetrahedron equation called $3 D R$.

Explicit formula for R matrices

- For some $U_{q}(g)$ and their representations, there exist explicit formulae for R matrices from three dimensional integrability.
- Example:
- $U_{q}(g)=U_{q}\left(A_{n-1}^{(1)}\right)$
- $\pi_{z}^{(1)}=\pi_{z}^{(2)}=\operatorname{arbitrary}(k$-th) fundamental representation $1 \leq k \leq n-1$

ㅁ Theorem:

$$
R(z)_{\boldsymbol{i}, \boldsymbol{j}}^{\boldsymbol{a}, \boldsymbol{b}}=\operatorname{Tr}_{F}\left(z^{\mathbf{h}} \mathcal{L}_{i_{1}, j_{1}}^{a_{1}, b_{1}} \cdots \mathcal{L}_{i_{n}, j_{n}}^{a_{n}, b_{n}}\right)=
$$

satisfies the intertwining relation

$$
\left(\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}\right)\left(\Delta^{\mathrm{op}}(g)\right) R(x / y)=R(x / y)\left(\pi_{x}^{(1)} \otimes \pi_{y}^{(2)}\right)(\Delta(g)) \quad{ }^{\forall} g \in U_{q}(X)
$$

$\square \mathcal{L}$ is the solution to the tetrahedron equation called $3 D L$.

Outline

- Yang-Baxter equation in 2D integrability
- Commuting transfer matrix
- Integrable hamiltonian

ㅁ Drinfeld-Jimbo quantum affine algebra

- Tetrahedron equation in 3D integrability
- 3DR and 3DL
- Matrix product solution to Yang-Baxter equation
- Kuniba-Okado-Yamada theorem

■ Main part:

- PBW bases of quantum superalgebras of type A of rank 2
- Concluding remarks

Tetrahedron equation

- Matrix equation on $V_{1} \otimes \cdots \otimes V_{6}$ (V_{i} : linear space)

$$
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124}
$$

- $R_{i j k}$ acts non-trivially only on $V_{i} \otimes V_{j} \otimes V_{k}$.
\square Tetrahedron equation = Yang-Baxter equation up to conjugation
- Unlike Yang-Baxter equation, a few families of solutions are known.
- We focus on solutions on the Fock spaces.

$$
\begin{aligned}
\text { boson Fock: } F & =\bigoplus_{m=0,1,2, \ldots} \mathbb{C}|m\rangle \\
\text { fermi Fock: } V & =\bigoplus_{m=0,1} \mathbb{C} u_{m}
\end{aligned}
$$

Solutions to tetrahedron equation: 3DR

- Set $\mathcal{R} \in \operatorname{End}\left(F^{\otimes 3}\right)$ by
[Kapranov-Voevodsky94]

$$
\begin{aligned}
& \mathcal{R}|i\rangle \otimes|j\rangle \otimes|k\rangle=\sum_{a, b, c} \mathcal{R}_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle \\
& \mathcal{R}_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \frac{\left(q^{2}\right)_{c+\mu}^{2}}{\left(q^{2}\right)_{c}}\binom{i}{\mu}_{q^{2}}\binom{j}{\lambda}_{q^{2}}
\end{aligned}
$$

Here

$$
(q)_{k}=\prod_{l=1}^{k}\left(1-q^{l}\right) \quad\binom{a}{b}_{q}=\frac{(q)_{a}}{(q)_{b}(q)_{a-b}}
$$

- The 3DR satisfies the following tetrahedron equation:

$$
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124}
$$

■ 3DR $=$ intertwiner of irreps of quantum coordinate ring $A_{q}\left(A_{2}\right)$

$$
\begin{array}{r}
\mathcal{R} \circ \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}(g)\right)=\pi_{2} \otimes \pi_{1} \otimes \pi_{2}(\Delta(g)) \circ \mathcal{R} \quad{ }^{\forall} g \in A_{q}\left(A_{2}\right) \\
\pi_{i}: A_{q}\left(A_{2}\right) \rightarrow \operatorname{End}(F)
\end{array}
$$

\square This gives a linearization method for tetrahedron equation.

- "121" and "212" are associated with the longest element of Weyl group.

Solutions to tetrahedron equation: 3DL

- Set $\mathcal{L} \in \operatorname{End}(V \otimes V \otimes F)$ by

$$
\begin{aligned}
& \mathcal{L}\left(u_{i} \otimes u_{j} \otimes|k\rangle\right)=\sum_{a, b \in\{0,1\}, c \in \mathbb{Z}_{\geq 0}} \mathcal{L}_{i, j, k}^{a, b, c} u_{a} \otimes u_{b} \otimes|c\rangle \\
& \mathcal{L}_{0,0, k}^{0,0, c}=\mathcal{L}_{1,1, k}^{1,1, c}=\delta_{k, c}, \quad \mathcal{L}_{0,1, k}^{0,1, c}=-\delta_{k, c} q^{k+1}, \quad \mathcal{L}_{1,0, k}^{1,0, c}=\delta_{k, c} q^{k}, \\
& \mathcal{L}_{1,0, k}^{0,1, c}=\delta_{k-1, c}\left(1-q^{2 k}\right), \quad \mathcal{L}_{0,1, k}^{1,0, c}=\delta_{k+1, c}
\end{aligned}
$$

- The 3DL satisfies the following tetrahedron equation:

$$
\begin{equation*}
\mathcal{L}_{124} \mathcal{L}_{135} \mathcal{L}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{L}_{236} \mathcal{L}_{135} \mathcal{L}_{124} \tag{*}
\end{equation*}
$$

- BS obtained the 3DL by ansatz so that the tetrahedron equation of (*) type has a non-trivial solution, and solved (*) for the 3DR.
They gives an alternative derivation for the 3DR.
\square Algebraic origins of the 3DL has been still unclear.

Reduction to Yang-Baxter equation

- We use the following graphical notations:

- Fact:

- h: number counting operator of the Fock spaces

$$
\mathbf{h}|m\rangle=m|m\rangle
$$

■ By multiplying \mathcal{R}^{-1} and taking trace on the auxiliary spaces, we obtain the Yang-Baxter equation.

Family of matrix product solutions

■ These solutions are characterized as the R matrices associated with some quantum affine algebras.
[Kuniba-Okado-Sergeev15]

	$\boldsymbol{R}^{\operatorname{tr}}(\mathbf{z})$	$\boldsymbol{R}^{(r, r \prime \prime}(\mathbf{z})$
$\mathcal{A}=3 \mathrm{DR}$	$U_{q}\left(A_{n-1}^{(1)}\right)$ symmetric tensor rep.	$U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(C_{n}^{(1)}\right)$ Fock rep.
$\boldsymbol{A}=3 \mathrm{DL}$	$U_{q}\left(A_{n-1}^{(1)}\right)$ fundamental rep.	$U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(B_{n}^{(1)}\right), U_{q}\left(D_{n}^{(1)}\right)$ spin rep.

- Moreover, by mixing uses of the 3DR \& 3DL, we also obtain the R matrices associated with generalized quantum groups.

Motivation \& KOY theorem

- Motivation:

Why do the 3DR \& 3DL lead to such similar results, although they have different origins?

- We study transition matrices of PBW bases of $U_{q}^{+}(s l(m \mid n))$ motivated by the KOY theorem which holds for non-super cases.

■ Theorem: [Kuniba-Okado-Yamada13] (Rough Statement)

- g: arbitrary finite-dimensional simple Lie algebra
- Φ : intertwiner of irreducible representations of $A_{q}(g)$
- γ : transition matrix of PBW bases of the nilpotent subalgebra of $U_{q}(g)$

ㅁ Then, we have $\Phi=\gamma$.
■ For \bigcirc - \bigcirc, the 3DR gives the transition matrix for $U_{q}\left(A_{2}\right)$.

- One of our result is that the 3DL is exactly the transition matrix for the quantum superalgebra associated with \bigcirc - \otimes.

Outline

- Yang-Baxter equation in 2D integrability
- Commuting transfer matrix
- Integrable hamiltonian
- Drinfeld-Jimbo quantum affine algebra
- Tetrahedron equation in 3D integrability
- 3DR and 3DL
- Matrix product solution to Yang-Baxter equation
- Kuniba-Okado-Yamada theorem
- Main part:
P.17~22
- PBW bases of quantum superalgebras of type A of rank 2
- Concluding remarks

Root data of Lie superalgebra of type A

- We only consider rank 2 cases.

■ Lie superalgebra $\operatorname{sl}(m \mid n)(m+n=3)$
\square Simple roots: $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$
\square Parity: p : $\Pi \rightarrow\{0,1\}$

- Positive roots: $\Phi=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\} \quad p\left(\alpha_{1}+\alpha_{2}\right)=p\left(\alpha_{1}\right)+p\left(\alpha_{2}\right)(\bmod 2)$
\square Even \& odd parts of positive roots: $\Phi=\Phi_{\text {even }} \cup \Phi_{\text {odd }}$
■ Dynkin diagram for $\operatorname{sl}(m \mid n)(m+n=3)$
- Prepare connected 2 dots and decorate the i-th dot by
\bigcirc for $\alpha_{i} \in \Phi_{\text {even }}, \otimes$ for $\alpha_{i} \in \Phi_{\text {odd }}$
- All diagrams are listed as follows
(1)

(3)

(2) $\bigcirc-\otimes$
(4)

PBW bases for $U_{q}^{+}(s l(m \mid n))$ of rank 2

■ $U_{q}^{+}=U_{q}^{+}(s l(m \mid n))$: nilpotent subalgebra of $U_{q}(s l(m \mid n)(m+n=3)$

- Generator: $\left\{e_{1}, e_{2}\right\}$
- If $\alpha_{i} \in \Phi_{\text {even }}, e_{i}^{2} e_{3-i}-\left(q+q^{-1}\right) \mathrm{e}_{\mathrm{i}} \mathrm{e}_{3-i} e_{i}+e_{3-i} e_{i}^{2}=0$
- If $\alpha_{i} \in \Phi_{\text {odd }}, e_{i}^{2}=0$
- PBW bases for U_{q}^{+}
\square We set $e_{i j}=e_{i} e_{j}-q e_{j} e_{i}$. Then, the following $B_{1} \& \mathrm{~B}_{2}$ give bases of U_{q}^{+}:

$$
\begin{aligned}
& B_{1}=\left\{e_{1}^{\left(a_{\alpha_{1}}\right)} e_{21}^{\left(a_{\alpha_{1}+\alpha_{2}}\right)} e_{2}^{\left(a_{\alpha_{2}}\right)} \mid a_{\alpha} \in \mathbb{Z}_{\geq 0}\left(\alpha \in \Phi_{\text {even }}\right), a_{\alpha} \in\{0,1\}\left(\alpha \in \Phi_{\text {odd }}\right)\right\} \\
& B_{2}=\left\{e_{2}^{\left(a_{\alpha_{2}}\right)} e_{12}^{\left(a_{\alpha_{1}+\alpha_{2}}\right)} e_{1}^{\left(a_{\alpha_{1}}\right)} \mid a_{\alpha} \in \mathbb{Z}_{\geq 0}\left(\alpha \in \Phi_{\text {even }}\right), a_{\alpha} \in\{0,1\}\left(\alpha \in \Phi_{\text {odd }}\right)\right\}
\end{aligned}
$$

$\square e_{i}^{(a)}$: divided power given by $e_{i}^{(a)}=e_{i}^{a} /[a]!\quad[m]!=\prod_{k=1}^{m}[k]$

- Transition matrix γ

$$
[k]=\frac{q^{k}-q^{-k}}{q-q^{-1}}
$$

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)}
$$

The case

- Root system

$$
\Phi_{\text {even }}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\} \quad \Phi_{\text {odd }}=\{ \}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \cdots(*) \quad i, j, k, a, b, c \in \mathbb{Z}_{\geq 0}
$$

■ Theorem: [Kuniba-Okado-Yamada13]

$$
\gamma_{i, j, k}^{a, b, c}=\mathcal{R}_{i, j, k}^{a, b, c}
$$

- Example: For $(a, b, c)=(0,1,1),(*)$ becomes

$$
\begin{aligned}
& e_{12} e_{1}=\mathcal{R}_{0,1,1}^{0,1,1} e_{1} e_{21}+\mathcal{R}_{1,0,2}^{0,1,1} \frac{e_{1}^{2}}{q+q^{-1}} e_{2} \\
& -q e_{2} e_{1}^{2}+\left(1+q^{2}\right) e_{1} e_{2} e_{1}-q e_{1}^{2} e_{2}=0 \quad \because \mathcal{R}_{0,1,1}^{0,1,1}=-q^{2}, \mathcal{R}_{1,0,2}^{0,1,1}=1-q^{4}
\end{aligned}
$$

This is a relation of \bigcirc

The case \bigcirc —— \otimes

- Root system

$$
\Phi_{\text {even }}=\left\{\alpha_{1}\right\} \quad \Phi_{\text {odd }}=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \cdots(*) \quad \begin{aligned}
& k, c \in \mathbb{Z}_{\geq 0} \\
& \\
& i, j, a, b \in\{0,1\}
\end{aligned}
$$

■ Theorem: [Y20]

$$
\gamma_{i, j, k}^{a, b, c}=\mathcal{L}_{i, j, k}^{a, b, c}
$$

- Example: For $(a, b, c)=(0,1,1),(*)$ becomes

$$
\begin{aligned}
& e_{12} e_{1}=\mathcal{L}_{0,1,1}^{0,1,1} e_{1} e_{21}+\mathcal{L}_{1,0,2}^{0,1,1} \frac{e_{1}^{2}}{q+q^{-1}} e_{2} \\
& -q e_{2} e_{1}^{2}+\left(1+q^{2}\right) e_{1} e_{2} e_{1}-q e_{1}^{2} e_{2}=0 \quad \because \mathcal{L}_{0,1,1}^{0,1,1}=-q^{2}, \mathcal{L}_{1,0,2}^{0,1,1}=1-q^{4}
\end{aligned}
$$

This is a relation of \bigcirc

The case $\otimes-\otimes$

■ Root system

$$
\Phi_{\text {even }}=\left\{\alpha_{1}+\alpha_{2}\right\} \quad \Phi_{\text {odd }}=\left\{\alpha_{1}, \alpha_{2}\right\}
$$

- Transition matrix

$$
e_{2}^{(a)} e_{12}^{(b)} e_{1}^{(c)}=\sum_{i, j, k} \gamma_{i, j, k}^{a, b, c} e_{1}^{(k)} e_{21}^{(j)} e_{2}^{(i)} \cdots(*) \quad \begin{aligned}
& j, b \in \mathbb{Z}_{\geq 0} \\
& i, k, a, c \in\{0,1\}
\end{aligned}
$$

■ Theorem: [Y20]

$$
\gamma_{i, j, k}^{a, b, c}=\mathcal{N}_{i, j, k}^{a, b, c}
$$

- Here, we define $\mathcal{N} \in \operatorname{End}(V \otimes F \otimes V)$ as follows:

$$
\begin{aligned}
& \mathcal{N}\left(u_{i} \otimes|j\rangle \otimes u_{k}\right)=\sum_{a, c \in\{0,1\}, b \in \mathbb{Z}_{\geq 0}} \mathcal{N}_{i, j, k}^{a, b, c} u_{a} \otimes|b\rangle \otimes u_{c} \\
& \mathcal{N}_{0, j, 0}^{0, b, 0}=\delta_{j, b} q^{j}, \quad \mathcal{N}_{1, j, 1}^{1, b, 1}=-\delta_{j, b} q^{j+1}, \quad \mathcal{N}_{0, j, 1}^{0, b, 1}=\mathcal{N}_{1, j, 0}^{1, b, 0}=\delta_{j, b}, \\
& \mathcal{N}_{1, j, 1}^{0, b, 0}=\delta_{j+1, b} q^{j}\left(1-q^{2}\right), \quad \mathcal{N}_{0, j, 0}^{1, b, 1}=\delta_{j-1, b}[j]_{q},
\end{aligned}
$$

Remark for rank 3

- Transition matrices γ for higher rank cases are constructed as compositions of ones for rank 2.

■ By constructing γ for rank 3 in two ways, we obtain the tetrahedron equation.

$$
\begin{gathered}
e_{3}^{\left(o_{1}\right)} e_{23}^{\left(o_{2}\right)} e_{2}^{\left(o_{3}\right)} e_{123}^{\left(o_{4}\right)} e_{12}^{\left(o_{5}\right)} e_{1}^{\left(o_{6}\right)}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}} \gamma_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}}^{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}, o_{6}} e_{1}^{\left(i_{6}\right)} e_{21}^{\left(i_{5}\right)} e_{321}^{\left(i_{4}\right)} e_{2}^{\left(i_{3}\right)} e_{32}^{\left(i_{2}\right)} e_{3}^{\left(i_{1}\right)} \\
\square \text { For } \bigcirc-\bigcirc-\bigcirc \\
\mathcal{R}_{123} \mathcal{R}_{145} \mathcal{R}_{246} \mathcal{R}_{356}=\mathcal{R}_{356} \mathcal{R}_{246} \mathcal{R}_{145} \mathcal{R}_{123}
\end{gathered}
$$

\square For

$\mathcal{L}_{123} \mathcal{L}_{145} \mathcal{L}_{246} \mathcal{R}_{356}=\mathcal{R}_{356} \mathcal{L}_{246} \mathcal{L}_{145} \mathcal{L}_{123}$
\square For $\bigcirc — \bigotimes-\bigotimes$ (new solution to the tetrahedron equation)

$$
\mathcal{N}\left(q^{-1}\right)_{123} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{R}_{246} \mathcal{L}_{356}=\mathcal{L}_{356} \mathcal{R}_{246} \mathcal{N}\left(q^{-1}\right)_{145} \mathcal{N}\left(q^{-1}\right)_{123}
$$

Concluding remarks

■ Remark:

1. Type B cases give new solutions to the 3D reflection equations, which describes boundary integrability in three dimensions.
2. The crystal limit for \mathcal{L}, \mathcal{N} gives a super analog of transition maps of Lusztig's parametrizations of the canonical basis of quantum algebras.

- Summary:

1. The 3 DL is characterized as the transition matrix for \square
 Q.
2. A new solution to the tetrahedron equation the 3DN is obtained by considering the transition matrix for $\otimes-\otimes$.
