# Matrix product solutions to reflection equation and coideal subalgebras of $U_{q}\left(A_{n-1}^{(1)}\right)$ 

## Infinite Analysis19@2019/03/06

Akihito Yoneyama<br>Institute of Physics, University of Tokyo, Komaba

Based on: A.Kuniba, and M.Okado, and AY, arXiv: 1812.03767

## YBE and RE in 2d integrability

■ Yang-Baxter equation


$$
\begin{aligned}
& R_{12}(x) R_{13}(y) R_{23}\left(x^{-1} y\right) \\
& =R_{23}\left(x^{-1} y\right) R_{13}(y) R_{12}(x)
\end{aligned}
$$

- Reflection equation

$R_{12}\left(x y^{-1}\right) K_{2}(x) R_{21}(x y) K_{1}(y)$
$=K_{1}(y) R_{12}(x y) K_{2}(x) R_{21}\left(x y^{-1}\right)$
- Point: characterization vs explicit formula
- Strategy: 3d structure $\rightarrow$ an explicit formula


## Outline

- Introduction (done)

■ MP structure of $K$ for the fundamental reps of $U_{q}\left(A_{n-1}^{(1)}\right) \quad$ P.4~14
■ MP structure of K for the symmetric tensor reps of $U_{q}\left(A_{n-1}^{(1)}\right) \quad$ P.16~24

- Summary and Outlook


## Quantized coordinate ring $A_{p}(G)$

■ the Hopf algebra dual to $U_{p}(g)$
[Drinfeld,87],[RTF,90] etc...

- Defined on arbitrary simply connected simple Lie group G
- Simplest Example: $A_{p}\left(S L_{2}\right)$

Recall

$$
\begin{aligned}
& S L_{2}=\left\{\left.\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \in \operatorname{End}\left(\mathbb{C}^{2}\right) \right\rvert\,\left[t_{i j}, t_{k l}\right]=0, t_{11} t_{22}-t_{12} t_{21}=1\right\} \\
& A_{p}\left(S L_{2}\right)=\left\langle t_{11}, t_{12}, t_{21}, t_{22}\right\rangle \text { with the relations } \\
& t_{11} t_{12}=p t_{12} t_{11}, t_{11} t_{21}=p t_{21} t_{11}, t_{12} t_{22}=p t_{22} t_{12}, t_{21} t_{22}=p t_{22} t_{21} \\
& {\left[t_{12}, t_{21}\right] }=0,\left[t_{11}, t_{22}\right]=\left(p-p^{-1}\right) t_{21} t_{12} \quad t_{11} t_{22}-p t_{12} t_{21}=1
\end{aligned}
$$

becomes Hopf algebra with coproduct $\Delta\left(t_{i j}\right)=\sum_{k} t_{i k} \otimes t_{k j}$

## Representation of $A_{p}(G)$

■ The irreducible reps of $A_{p}(G)$ are classified in [Soibelman,91]
$\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(g)$
■ Let p-boson $\left\langle\mathbf{1}, \mathbf{a}^{+}, \mathbf{a}^{-}, \mathbf{h}\right\rangle$ with the relations

$$
\mathbf{k}=p^{\mathbf{h}}, \mathbf{k a}^{ \pm}=p^{ \pm} \mathbf{a}^{ \pm} \mathbf{k}, \mathbf{a}^{-} \mathbf{a}^{+}=\mathbf{1}-p^{2} \mathbf{k}^{2}, \mathbf{a}^{+} \mathbf{a}^{-}=\mathbf{1}-\mathbf{k}^{2}
$$

and its Fock space $F_{p}=\oplus_{m \geq 0} \mathbb{C}|m\rangle$ with

$$
\mathbf{k}|m\rangle=p^{m}|m\rangle, \mathbf{a}^{+}|m\rangle=|m+1\rangle, \mathbf{a}^{-}|m\rangle=\left(1-p^{2 m}\right)|m-1\rangle
$$

- Theorem [Soibelman,91]
- All the irreps of $A_{p}(G)$ are given as follows:

$$
\begin{array}{ccc}
s_{i} \in W(g) \quad \text { (simple reflection) } & \longleftrightarrow & { }^{\exists} \pi_{i}: A_{p}(G) \rightarrow \operatorname{End}(F) \\
s_{i_{1}} \cdots s_{i_{r}} \quad \text { (reduced expression) } & \longleftrightarrow & \pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}
\end{array}
$$

- If $s_{i_{1}} \cdots s_{i_{r}}=s_{j_{1}} \cdots s_{j_{r}}$, then $\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}} \simeq \pi_{j_{1}} \otimes \cdots \otimes \pi_{j_{r}}$


## Example: $A_{p}\left(S P_{4}\right)$

■ $A_{p}\left(S P_{4}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{4}$
$\pi_{1}$
$\left(\begin{array}{cccc}t_{11} & t_{12} & t_{13} & t_{14} \\ t_{21} & t_{22} & t_{23} & t_{24} \\ t_{31} & t_{32} & t_{33} & t_{34} \\ t_{41} & t_{42} & t_{43} & t_{44}\end{array}\right) \mapsto\left(\begin{array}{cccc}\mathbf{a}^{-} & \mathbf{k} & 0 & 0 \\ -p \mathbf{k} & \mathbf{a}^{+} & 0 & 0 \\ 0 & 0 & \mathbf{a}^{-} & -\mathbf{k} \\ 0 & 0 & p \mathbf{k} & \mathbf{a}^{+}\end{array}\right),\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \mathbf{A}^{-} & \mathbf{K} & 0 \\ 0 & -p^{2} \mathbf{K} & \mathbf{A}^{+} & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \begin{aligned} & F_{p} \\ & \left\langle\mathbf{a}_{p^{2}}\right. \\ & \left\langle\mathbf{a}^{ \pm}, \mathbf{k}\right\rangle: p \text {-boson } \\ & \end{aligned}$
$\square W\left(s p_{4}\right)=\left\langle s_{1}, s_{2}\right\rangle \quad s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1}$
$\square \pi_{1} \otimes \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \simeq \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}$
■ By Schur's Lemma ${ }^{\exists} \Phi: F_{p} \otimes F_{p^{2}} \otimes F_{p} \otimes F_{p^{2}} \rightarrow F_{p^{2}} \otimes F_{p} \otimes F_{p^{2}} \otimes F_{p}$ $\pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta\left(t_{i j}\right)\right) \circ \Phi=\Phi \circ \pi_{1} \otimes \pi_{2} \otimes \pi_{1} \otimes \pi_{2}\left(\Delta\left(t_{i j}\right)\right)$

Set $\mathcal{K}=\Phi \circ \sigma \in \operatorname{End}\left(F_{p^{2}} \otimes F_{p} \otimes F_{p^{2}} \otimes F_{p}\right) \quad \sigma(x \otimes y \otimes z \otimes w)=w \otimes z \otimes y \otimes x$ $\pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta\left(t_{i j}\right)\right) \circ \mathcal{K}=\mathcal{K} \circ \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}\left(t_{i j}\right)\right)$ Here, $\Delta^{\mathrm{op}}\left(t_{i j}\right)=\sigma \Delta\left(t_{i j}\right) \sigma$

## 3dK

■ Denote its component as $\mathcal{K}|i, j, k, l\rangle=\sum_{a, b, c, d} \mathcal{K}_{i j k l}^{a b c d}|a, b, c, d\rangle$

- Prop [Kuniba-Okado,12]

$$
|i, j, k, l\rangle:=|i\rangle \otimes|j\rangle \otimes|k\rangle \otimes|l\rangle
$$

- With the normalization $\mathcal{K}|0,0,0,0\rangle=|0,0,0,0\rangle$

$$
\begin{gathered}
\mathcal{K}_{i, j, k, l}^{a, b, c, d}=\frac{\left(p^{4}\right)_{i}}{\left(p^{4}\right)_{a}} \sum_{\alpha, \beta, \gamma} \frac{(-1)^{\alpha+\gamma}}{\left(p^{4}\right)_{c-\beta}} p^{\phi_{1}} \mathcal{K}_{a, b+c-\alpha-\beta-\gamma, 0, c+d-\alpha-\beta-\gamma}^{i, j+k-\alpha-\beta-\gamma, 0, l+k-\alpha-\beta-\gamma}\left\{\begin{array}{c}
k, c-\beta, j+k-\alpha-\beta, k+l-\alpha-\beta \\
\alpha, \beta, \gamma, b-\alpha, d-\alpha, k-\alpha-\beta, c-\beta-\gamma
\end{array}\right\} \\
\mathcal{K}_{i, j, 0, l}^{a, b, 0, d}=\sum_{\lambda}(-1)^{b+\lambda} \frac{\left(p^{4}\right)_{a+\lambda}}{\left(p^{4}\right)_{a}} p^{\phi_{2}}\left\{\begin{array}{c}
j, l \\
\lambda, l-\lambda, b-\lambda, j-b+\lambda
\end{array}\right\} \\
\phi_{1}=\alpha(\alpha+2 c-2 \beta-1)+(2 \beta-c)(b+c+d)+\gamma(\gamma-1)-k(j+k+l) \\
\text { Here, } \quad \phi_{2}=(i+a+1)(b+l-2 \lambda)+b-l
\end{gathered}
$$

$$
(p)_{k}=\prod_{l=1}^{k}\left(1-p^{l}\right) \quad\left\{\begin{array}{l}
i_{1}, \cdots, i_{r} \\
i_{1}, \cdots, i_{s}
\end{array}\right\}= \begin{cases}\frac{\prod_{k=1}^{r}\left(p^{2}\right)_{i_{k}}}{\prod_{k=1}^{s}\left(p^{2}\right)_{j_{k}}} & \forall i_{k}, j_{k} \in \mathbb{Z}_{\geq 0} \\
0 & \text { otherwise }\end{cases}
$$

$\square \mathcal{K}_{i, j, k, l}^{a, b, c, d} \in p^{\eta} \mathbb{Z}\left[p^{2}\right] \quad \eta \equiv j l+b d \bmod 2$
$\square \mathcal{K}^{-1}=\mathcal{K}$
$\square\left[\left(x y^{-1}\right)^{\mathbf{h}_{1}} x^{\mathbf{h}_{2}}(x y)^{\mathbf{h}_{3}} y^{\mathbf{h}_{4}}, \mathcal{K}\right]=0 \quad \mathbf{h}_{1}=\mathbf{h} \otimes 1 \otimes 1 \otimes 1$

$$
\mathbf{h}|m\rangle=m|m\rangle
$$

## Quantized reflection equation

- Recall the intertwining relations for 3 dK

$$
\pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta\left(t_{i j}\right)\right) \circ \mathcal{K}=\mathcal{K} \circ \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}\left(t_{i j}\right)\right) \quad(i, j=1, \cdots, 4)
$$

RE up to conjugation $=$ : Quantized RE [Kuniba-Pasquier,18] $L_{123} G_{24} L_{215} G_{16} \mathcal{K}_{3456}=\mathcal{K}_{3456} G_{16} L_{125} G_{24} L_{213} \in \operatorname{End}\left(\stackrel{1}{V} \otimes \stackrel{2}{V} \otimes \stackrel{3}{F_{p^{2}}} \otimes \stackrel{4}{F_{p}} \otimes \stackrel{5}{F_{p^{2}}} \otimes \stackrel{6}{F_{p}}\right)$

$$
V=\mathbb{C} v_{0} \oplus \mathbb{C} v_{1}
$$

■ $L_{i, j}^{a, b}$ and $G_{i}^{a}$ act on the auxiliary Fock spaces. $i, j, a, b \in\{0,1\}$

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & p \mathbf{K} & \mathbf{A}^{-} & 0 \\
0 & \mathbf{A}^{+} & -p \mathbf{K} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \in \operatorname{End}\left(V \otimes V \otimes F_{p^{2}}\right) \\
& L_{i, j}^{a, b}=i \xrightarrow{\stackrel{b}{4}} a \\
& \in \operatorname{End}\left(F_{q^{2}}\right) \\
& G=\left(\begin{array}{cc}
\mathbf{a}^{+} & -p^{\frac{1}{2}} \mathbf{k} \\
p^{\frac{1}{2}} \mathbf{k} & \mathbf{a}^{-}
\end{array}\right) \\
& \in \operatorname{End}\left(V \otimes F_{p}\right) \\
& \in \operatorname{End}\left(F_{q}\right)
\end{aligned}
$$



## Reduction: General method

- QRE can be reduced and gives the solution of RE 1. Consider the n -copies of QRE:

$$
L_{1_{j} 2_{j} 3} G_{2_{j} 4} L_{2_{j} 1_{j} 5} G_{1_{j} 6} \mathcal{K}_{3456}=\mathcal{K}_{3456} G_{1_{j} 6} L_{1_{j} 2_{j} 5} G_{2_{j} 4} L_{2_{j} 1_{j} 3} \quad j=1, \cdots, n
$$



$$
\begin{aligned}
& {\left[L_{1_{12}{ }_{2} 3} G_{2_{14}} L_{2_{11} 1_{1}} G_{1_{1} 6}\right] \cdots\left[L_{1_{n} 2_{3} 3} G_{2_{n} 4} L_{2_{n} 1_{n} 5} G_{1_{n}}\right] \mathcal{K}_{3456}} \\
& =\mathcal{K}_{3456}\left[G_{1_{1} 6} L_{1_{1} 2_{1} 5} G_{2_{1} 4} L_{2_{1} 1_{1} 3}\right] \cdots\left[G_{1_{n} 6} L_{1_{n} 2_{5} 5} G_{2_{n} 4} L_{2_{n} 1_{n} 3}\right] \\
& {\left[L_{1_{12} 2_{1} 3} \cdots L_{1_{n} 2_{n} 3}\right]\left[G_{2_{1} 4} \cdots G_{2_{n} 4}\right]\left[L_{2_{11} 1_{1}} \cdots L_{2_{n} 1_{n} 5}\right]\left[G_{1_{16}} \cdots G_{1_{n} 6}\right] \mathcal{K}_{3456}} \\
& =\mathcal{K}_{3456}\left[G_{1_{1} 6} \cdots G_{1_{n} 6}\right]\left[L_{1_{1} 2_{1} 5} \cdots L_{1_{n} 2_{n} 5}\right]\left[G_{2_{1} 4} \cdots G_{2_{n} 4}\right]\left[L_{2_{1} 1_{1} 3} \cdots L_{2_{n} 1_{n} 3}\right]
\end{aligned}
$$

3. Use $\mathcal{K}^{-1}=\mathcal{K}$ and $\left[\left(x y^{-1}\right)^{\mathrm{h}_{1}} x^{\mathrm{h}_{2}}(x y)^{\mathrm{h}_{3}} y^{\mathrm{h}_{4}}, \mathcal{K}\right]=0$, and take $\operatorname{Tr}$ over 3456:

$$
\begin{aligned}
& R_{\mathbf{1 2}}\left(x y^{-1}\right) K_{\mathbf{2}}(x) R_{\mathbf{2 1}}(x y) K_{\mathbf{1}}(y)=K_{\mathbf{1}}(y) R_{\mathbf{1 2}}(x y) K_{\mathbf{2}}(x) R_{\mathbf{2 1}} \\
& R_{\mathbf{1 2}}(z)=\operatorname{Tr}_{F_{p^{2}}}\left(z^{\mathbf{h}_{a}} L_{1_{1} 2_{1} a} \cdots L_{1_{n} 2_{n} a}\right) \in \operatorname{End}\left(V^{\otimes n} \otimes V^{\otimes n}\right) \\
& K_{\mathbf{1}}(z)=\operatorname{Tr}_{F_{p}}\left(z^{z_{a}} G_{1_{1} a} \cdots G_{1_{n} a}\right) \in \operatorname{End}\left(V^{\otimes n}\right)
\end{aligned}
$$

## Reduction: 3dL and 3dG

$$
\alpha_{j}, \beta_{j}, \gamma_{j}, \delta_{j} \in\{0,1\}
$$



$$
\begin{aligned}
& R(z)_{\alpha, \beta}^{\gamma, \delta}:=\operatorname{Tr}\left(z^{\mathbf{h}} L_{\alpha_{1}, \beta_{1}}^{\gamma_{1}, \delta_{1}} \cdots L_{\alpha_{n}, \beta_{n}}^{\gamma_{n}, \delta_{n}}\right) \\
& R(z) \in \operatorname{End}\left(V^{\otimes n} \otimes V^{\otimes n}\right)
\end{aligned}
$$



$$
\begin{aligned}
& K(z)_{\alpha}^{\gamma}=\operatorname{Tr}\left(z^{\mathbf{h}} G_{\alpha_{1}}^{\gamma_{1}} \cdots G_{\alpha_{n}}^{\gamma_{n}}\right) \\
& K(z) \in \operatorname{End}\left(V^{\otimes n}\right)
\end{aligned}
$$

- Natural Q: R and K have the origins of quantum groups?

■ Yes! They are related to the fundamental reps of $U_{q}\left(A_{n-1}^{(1)}\right)$. From now on, we fix $p=i q$.

## $U_{q}\left(A_{n-1}^{(1)}\right)$ and the fundamental reps

■ Generators: $e_{j}, f_{j}, k_{j}^{ \pm 1}\left(j \in \mathbb{Z}_{n}\right)$
■ Cartan matrix: $a_{i, j}=2 \delta_{i, j}-\delta_{i, j+1}-\delta_{i, j-1}$

- Relations

$$
\begin{aligned}
& k_{j} k_{j}^{-1}=1, \quad\left[k_{i}, k_{j}\right]=0, k_{i} e_{j}=q^{2 a_{i, j}} e_{j} k_{i}, k_{i} f_{j}=q^{-2 a_{i, j}} f_{j} k_{i} \\
& {\left[e_{i}, f_{j}\right]=\delta_{i, j} \frac{k_{i}-k_{i}^{-1}}{q^{2}-q^{-2}}+\text { Serre type relations }}
\end{aligned}
$$

- Coproduct:

$$
\Delta k_{j}^{ \pm 1}=k_{j}^{ \pm 1} \otimes k_{j}^{ \pm 1}, \Delta e_{j}=e_{j} \otimes 1+k_{j} \otimes e_{j}, \Delta f_{j}=1 \otimes f_{j}+f_{j} \otimes k_{j}^{-1}
$$

- Antipode:

$$
S\left(k_{j}\right)=k_{j}^{-1}, S\left(e_{j}\right)=-e_{j} k_{k}^{-1}, S\left(f_{j}\right)=-k_{j} f_{j}
$$

■ Fundamental rep $\left(W_{k, z}, \rho_{k, z}\right)$

$$
\begin{aligned}
& V^{\otimes n}=\oplus_{k=0}^{n} W_{k, z} \quad V=\mathbb{C} v_{0} \oplus \mathbb{C} v_{1} \\
& W_{k, z}=\bigoplus_{\substack{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1\}^{n} \\
\sum_{j=1}^{n} \alpha_{j}=k}}^{\mathbb{C}(q) v_{\alpha_{1}} \otimes \cdots \otimes v_{\alpha_{n}}} \quad \begin{array}{l}
\rho_{k, z}: U_{q} \rightarrow \operatorname{End}\left(W_{k, z}\right) \\
\rho_{k, z}\left(k_{j}\right) v_{\alpha}=q^{2\left(\alpha_{j+1}-\alpha_{j}\right)} v_{\alpha} \\
\rho_{k, z}\left(e_{j}\right) v_{\alpha}=z^{j_{j, 0}} v_{\alpha-\mathbf{e}_{j}+\mathbf{e}_{j+1}} \\
\rho_{k, z}\left(f_{j}\right) v_{\alpha}=z^{-\delta_{j, 0}} v_{\alpha+\mathbf{e}_{j}-\mathbf{e}_{j+1}}
\end{array} \\
& \mathbf{e}_{j}=(0, \cdots, 1, \cdots, 0)
\end{aligned}
$$

as $U_{q}\left(A_{n-1}\right)$ module, $W_{k, Z} \simeq V\left(\omega_{k}\right)$ i.e. k-th fundamental rep.

## Characterization by quantum groups

- Prop [Bazhanov-Sergeev,06]

ㅁ $R(z):=\operatorname{Tr}\left(z^{\mathbf{h}} L \cdots L\right) \in \operatorname{End}\left(V^{\otimes n} \otimes V^{\otimes n}\right)$ decomposes as

$$
R(z)=\bigoplus_{0 \leq l, m \leq n} R_{l, m}(z), \quad R_{l, m}\left(x y^{-1}\right) \in \operatorname{End}\left(W_{l, x} \otimes W_{m, y}\right)
$$

and satisfies the following intertwining relation

$$
R_{l m}\left(x y^{-1}\right) \circ \rho_{l, x} \otimes \rho_{m, y}(\Delta(g))=\rho_{l, x} \otimes \rho_{m, y}\left(\Delta^{\mathrm{\circ p}}(g)\right) \circ R_{l m}\left(x y^{-1}\right) \quad \forall g \in U_{q}\left(A_{n-1}^{(1)}\right)
$$

■ What about $K(z):=\operatorname{Tr}\left(z^{\mathbf{h}} G \cdots G\right) \in \operatorname{End}\left(V^{\otimes n}\right)$ ?
■ K-matrices are systematically constructed by considering some coideal subalgebra of $U_{q}$, parallel to R-matrices!


## Reflection equation and coideal subalg

■ Let $\mathcal{J}_{q}$ be a left coideal subalg of $U_{q}\left(A_{n-1}^{(1)}\right)$ i.e. $\Delta\left(\mathcal{J}_{q}\right) \subset U_{q} \otimes \mathcal{J}_{q}$
■ Suppose $W_{l, z}$ and $W_{l, x} \otimes W_{m, y}$ be irreducible as $\mathcal{J}_{q}$-module
■ Consider the intertwiner $K_{l}(z): W_{l, z} \rightarrow W_{n-l, z^{-1}}$ s.t.

$$
K_{l}(z) \circ \rho_{l, z}(g)=\rho_{n-l, z^{-1}}(g) \circ K_{l}(z) \quad{ }^{\forall} g \in \mathcal{I}_{p}
$$

■ Let's consider the intertwiner of $\mathcal{J}_{q}$ in two ways

$$
P R_{l, n-m}(x y) \quad 1 \otimes K_{l}(x)
$$

$$
P(x \otimes y)=y \otimes x
$$

$1 \otimes K_{m}(y) \leftrightharpoons W_{l, x} \otimes W_{n-m, y^{-1}} \longrightarrow W_{n-m, y^{-1}} \otimes W_{l, x} \longrightarrow W_{n-m, y^{-1}} \otimes W_{n-l, x^{-1}} P R_{n-m, n-l}\left(x y^{-1}\right)$

$$
W_{l, x} \otimes W_{m, y} \quad W_{n-l, x^{-1}} \otimes W_{n-m, y^{-1}}
$$

$P R_{l, m}\left(x y^{-1}\right)^{-} W_{m, y} \otimes W_{l, x} \xrightarrow{1 \otimes K_{l}(x)} W_{m, y} \otimes W_{n-l, x^{-1}} \xrightarrow{\longrightarrow} R_{m, n-l}(x y) W_{n-l, x^{-1}} \otimes W_{m, y}{ }_{1}{ }_{1} K_{m}(y)$
this gives the RE:

$$
R_{12}\left(x y^{-1}\right) K_{2}(x) R_{21}(x y) K_{1}(y)=K_{1}(y) R_{12}(x y) K_{2}(x) R_{21}\left(x y^{-1}\right)
$$

## Generalized q-Onsager coideal

- Let's consider the specific coideal subalgebra $\mathcal{B}_{q}^{\prime}$ generated by

$$
\begin{aligned}
& b_{j}^{\prime}=e_{j}+q^{2} k_{j} f_{j}+\frac{i q}{1-q^{2}} k_{j} \quad\left(j \in \mathbb{Z}_{n}\right) \\
& \Delta\left(b_{j}^{\prime}\right)=k_{j} \otimes b_{j}^{\prime}+\left(e_{j}-q^{2} k_{j} f_{j}\right) \otimes 1 \quad \therefore \Delta\left(\mathcal{B}_{q}^{\prime}\right) \subset U_{q} \otimes \mathcal{B}_{q}^{\prime}
\end{aligned}
$$

$\square$ For ${ }^{\forall} \alpha_{j}, \beta_{j} \in \mathbb{C}, e_{j}+\alpha_{j} k_{j} f_{j}+\beta_{j} k_{j}$ also generate left coideal subalgebras.
$\square$ Our parameter choice
$>$ satisfies a necessary condition for nontrivial K.
$>$ corresponds to a type A generalized q-Onsager algebra [Baseilhac-Belliard,09] which is an example of quantum symmetric pair [Kolb,12].
$\square W_{l, z}$ and $W_{l, x} \otimes W_{m, y}$ are irreducible as $\mathcal{B}_{q}^{\prime}$-module.

- Prop [Kuniba-Okado-Y, (in preparation)]

ㅁ $K(z):=\operatorname{Tr}\left(z^{\mathbf{h}} G \cdots G\right) \in \operatorname{End}\left(V^{\otimes n}\right)$ decomposes as

$$
K(z)=\oplus_{0 \leq l \leq n} K_{l}(z), \quad K_{l}(z) \in \operatorname{End}\left(W_{l, z} \rightarrow W_{n-l, z^{-1}}\right)
$$

and satisfy

$$
K_{l}(z) \circ \rho_{l, z}(b)=\rho_{n-l, z^{-1}}(b) \circ K_{l}(z) \quad{ }^{\forall} b \in \mathcal{B}_{q}^{\prime}
$$



## Outline

- Introduction (done)

■ MP structure of $K$ for the fundamental reps of $U_{q}\left(A_{n-1}^{(1)}\right) \quad$ P.4~14
■ MP structure of K for the symmetric tensor reps of $U_{q}\left(A_{n-1}^{(1)}\right) \quad$ P.16~24

- Summary and Outlook



## Is there some generalization?

■ To summarize up to now... $\quad L_{123} G_{24} L_{215} G_{16} \mathcal{K}_{3456}=\mathcal{K}_{3456} G_{16} L_{125} G_{24} L_{213}$ 1. $Q R E \xrightarrow{\text { reduction }} M P$ solutions of $R E$
2. Characterization in terms of quantum groups

- Any other R and K having MP structure?
- Actually, for the symmetric tensor reps $\left(V_{l, z}, \pi_{l, z}\right)(l=1,2, \cdots)$ of $U_{q}\left(A_{n-1}^{(1)}\right)$, Rmatrix has MP structure:

$$
\begin{aligned}
& R(z):=\operatorname{Tr}_{F_{q^{2}}}\left(z^{-\mathbf{h}} \mathcal{R} \cdots \mathcal{R}\right) \in \operatorname{End}\left(F_{q^{2}}^{\otimes n} \otimes F_{q^{2}}^{\otimes n}\right) \\
& \left\{\begin{array}{l}
R(z)=\bigoplus_{l, m \in \mathbb{Z}_{\geq 0}} R_{l, m}(z), \quad R_{l, m}\left(x y^{-1}\right) \in \operatorname{End}\left(V_{l, x} \otimes V_{m, y}\right) \quad F_{q^{2}}^{\otimes n}=\oplus_{l \geq 0} V_{l, z} \\
R_{l m}\left(x y^{-1}\right) \circ \pi_{l, x} \otimes \pi_{m, y}(\Delta(g))=\pi_{l, x} \otimes \pi_{m, y}\left(\Delta^{\mathrm{op}}(g)\right) \circ R_{l m}\left(x y^{-1}\right) \quad{ }^{\forall} g \in U_{q}\left(A_{n-1}^{(1)}\right)
\end{array}\right.
\end{aligned}
$$

Here, $\mathcal{R} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q^{2}} \otimes F_{q^{2}}\right)$ is essentially the intertwiner of $A_{q^{2}}\left(S L_{3}\right)$ like $\mathcal{K}$ in $A_{q}\left(S P_{4}\right)$.
$\square$ Natural Q: Is there ${ }^{\exists} \mathcal{G} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q}\right)$ which gives K-matrices associated to the symmetric tensor reps by $K(z)=\operatorname{Tr}_{F_{q}}\left(z^{-\mathrm{h}} \mathcal{G} \cdots \mathcal{G}\right) \in \operatorname{End}\left(F_{q^{2}}^{\otimes n}\right)$ ?

## $U_{q}\left(A_{n-1}^{(1)}\right)$ and the symmetric tensor reps

■ Symmetric tensor rep $\left(V_{k, z}, \pi_{k, z}\right) \quad \pi_{k, z}: U_{q} \rightarrow \operatorname{End}\left(V_{k, z}\right)$

$$
\begin{aligned}
& F_{q^{2}}^{\otimes n}=\oplus_{k=0}^{\infty} V_{k} \\
& V_{k, z}=\bigoplus_{\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in B_{k}} \mathbb{C}\left(q^{2}\right)\left|\alpha_{1}, \cdots, \alpha_{n}\right\rangle
\end{aligned}\left\{\begin{array}{l}
\pi_{k, z}\left(k_{j}\right)|\alpha\rangle=q^{2\left(\alpha_{j+1}-\alpha_{j}\right)}|\alpha\rangle \\
\pi_{k, z}\left(e_{j}\right)|\alpha\rangle=z^{\delta_{j, 0}}\left[\alpha_{j}\right]_{q^{2}}\left|\alpha-\mathbf{e}_{j}+\mathbf{e}_{j+1}\right\rangle \\
\pi_{k, z}\left(f_{j}\right)|\alpha\rangle=z^{-\delta_{j, 0}}\left[\alpha_{j+1}\right]_{q^{2}}\left|\alpha+\mathbf{e}_{j}-\mathbf{e}_{j+1}\right\rangle
\end{array} \quad \begin{array}{l}
B_{k}=\left\{\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{j=1}^{n} \alpha_{j}=k\right\} \quad \frac{q^{m}-q^{-m}}{q-q^{-1}}
\end{array}\right.
$$

as $U_{q}\left(A_{n-1}\right)$-module, $V_{k, z} \simeq V\left(k \omega_{1}\right)$
■ $\left(V_{k, z}^{*}, \pi_{k, z}^{*}\right):=$ the antipode dual rep of $V_{k, z}$ i.e. $V_{k, Z}^{*} \simeq V\left(k \omega_{n-1}\right)$

$$
\begin{aligned}
& V_{k, z}^{*}=\bigoplus_{\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in B_{k}} \mathbb{C}\left(q^{2}\right)\left|\alpha_{1}, \cdots, \alpha_{n}\right\rangle \\
& \pi_{k, z}^{*}: U_{q} \rightarrow \operatorname{End}\left(V_{k, z}^{*}\right)
\end{aligned}\left\{\begin{array}{l}
\pi_{k, z}^{*}\left(k_{j}\right)|\alpha\rangle=q^{2\left(-\alpha_{j+1}+\alpha_{j}\right)}|\alpha\rangle \\
\pi_{k, z}^{*}\left(e_{j}\right)|\alpha\rangle=-z^{\delta_{j, 0}}\left[\alpha_{j+1}+1\right]_{q^{2}} q^{2\left(\alpha_{j+1}-\alpha_{j}+2\right)}\left|\alpha+\mathbf{e}_{j}-\mathbf{e}_{j+1}\right\rangle \\
\pi_{k, z}^{*}\left(f_{j}\right)|\alpha\rangle=-z^{-\delta_{j, 0}}\left[\alpha_{j}+1\right]_{q^{2}} q^{2\left(-\alpha_{j+1}+\alpha_{j}\right)}\left|\alpha-\mathbf{e}_{j}+\mathbf{e}_{j+1}\right\rangle
\end{array}\right.
$$

■ We consider the problem in reverse order, i.e.

1. QRE $\xrightarrow{\text { reduction }} M P$ solutions of $R E$
2. Characterization in terms of quantum groups

## Intertwining relation for K

■ Let's consider the coideal subalgebra $\mathcal{B}_{q}$ generated by

$$
b_{j}=e_{j}-q^{4} k_{j} f_{j}-\frac{q^{2}}{1-q^{2}} k_{j} \quad\left(j \in \mathbb{Z}_{n}\right), \quad \Delta\left(\mathcal{B}_{q}\right) \subset U_{q} \otimes \mathcal{B}_{q}
$$

- $\mathcal{B}_{q} \simeq \mathcal{B}_{q}^{\prime} \simeq$ generalized q-Onsager algebra
- $V_{l, z}$ and $V_{l, x} \otimes V_{m, y}$ are irreducible as $\mathcal{B}_{q}$-module.
- Start from the intertwiner $K_{l}(z): V_{l, z} \rightarrow V_{l, z^{-1}}^{*}$

$$
K_{l}(z) \circ \pi_{l, z}\left(b_{j}\right)=\pi_{l, z^{-1}}^{*}\left(b_{j}\right) \circ K_{l}(z) \quad\left(j \in \mathbb{Z}_{n}\right), \quad K(z)|\alpha\rangle=\sum_{\gamma \in B_{l}} K(z)_{\alpha}^{\gamma}|\gamma\rangle
$$

This reads explicitly as
$-z^{\delta_{j, 0}}\left[\alpha_{j+1}\right]_{q^{2}} K(z)_{\alpha+\mathbf{e}_{j}-\mathbf{e}_{j+1}}^{\gamma}+z^{-\delta_{j, 0}}\left[\alpha_{j}\right]_{q^{2}} q^{2\left(\alpha_{j}-\alpha_{j+1}\right)} K(z)_{\alpha-\mathbf{e}_{j}+\mathbf{e}_{j+1}}^{\gamma}+\frac{1}{1-q^{2}} q^{2\left(\alpha_{j}-\alpha_{j+1}+1\right)} K(z)_{\alpha}^{\gamma}$
$=z^{-\delta_{j, 0}}\left[\gamma_{j+1}\right]_{q^{2}} q^{2\left(-\gamma_{j}+\gamma_{j+1}\right)} K(z)_{\alpha}^{\gamma+\mathbf{e}_{j}-\mathbf{e}_{j+1}}-z^{\delta_{j, 0}}\left[\gamma_{j}\right]_{q^{2}} K(z)_{\alpha}^{\gamma-\mathbf{e}_{j}+\mathbf{e}_{j+1}}+\frac{1}{1-q^{2}} q^{2\left(-\gamma_{j}+\gamma_{j+1}+1\right)} K(z)_{\alpha}^{\gamma}$
This equation is only associated to $j \sim j+1$-th sites.
$\square$ Suppose ${ }^{\exists} \mathcal{G} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q}\right)$ s.t. $K(z)_{\alpha}^{\gamma}=\operatorname{Tr}_{F_{q}}\left(z^{-\mathrm{h}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \cdots \mathcal{G}_{\alpha_{n}}^{\gamma_{n}}\right)$. Here, $\mathcal{G}_{i}^{j}$ is given by $\mathcal{G}|i\rangle \otimes|m\rangle=\sum_{j \in \mathbb{Z}_{\geq 0}}|j\rangle \otimes \mathcal{G}_{i}^{j}|m\rangle$.


## Bilinear equations for $\mathcal{G}$

- Lemma [KOY,18]
- If $\mathcal{G}_{i}^{j}$ satisfies the following equations

$$
\begin{aligned}
& -\left[\alpha_{2}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}+1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}-1}^{\gamma_{2}}+q^{2\left(\alpha_{1}-\alpha_{2}\right)}\left[\alpha_{1}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}-1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}+1}^{\gamma_{2}}+\frac{1}{1-q^{2}} q^{2\left(\alpha_{1}-\alpha_{2}+1\right)} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \mathcal{Q}_{\alpha_{2}}^{\gamma_{2}} \\
= & q^{2\left(-\gamma_{1}+\gamma_{2}\right)}\left[\gamma_{2}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}+1} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}-1}-\left[\gamma_{1}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}-1} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}+1}+\frac{1}{1-q^{2}} q^{2\left(-\gamma_{1}+\gamma_{2}+1\right)} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}}
\end{aligned}
$$

$$
\alpha_{j}, \gamma_{j} \in \mathbb{Z}_{\geq 0}
$$

then, $K(z)_{\alpha}^{\gamma}=\operatorname{Tr}\left(z^{-\mathrm{h}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \cdots \mathcal{G}_{\alpha_{n}}^{\gamma_{n}}\right)$ satisfy the intertwining relation.

- Sketch of proof

$-\left[\alpha_{2}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}+1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}-1}^{\gamma_{2}}+q^{2\left(\alpha_{1}-\alpha_{2}\right)}\left[\alpha_{1}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}-1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}+1}^{\gamma_{2}}+\frac{1}{1-q^{2}} q^{2\left(\alpha_{1}-\alpha_{2}+1\right)} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}}$
$K_{l}(z) \circ \pi_{l, z}\left(b_{j}\right)=\pi_{l, z^{-1}}^{*}\left(b_{j}\right) \circ K_{l}(z) \quad\left(j \in \mathbb{Z}_{n}\right)$,
- The above equations = overdetermined recurrence equations


## Explicit formula of $\mathcal{G}$

- Thm [KOY,18]
$\square \mathcal{G} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q}\right)$ is given by $\mathcal{G}_{i}^{j}=q^{-i^{2}} \mathbf{k}^{-2 i} G_{i}^{j}$ and $\quad(z ; q)=\prod_{k=1}^{m}\left(1-z q^{k-1}\right)$

$$
\begin{aligned}
G_{i}^{j} & =\left(-q^{2} ; q^{2}\right)_{i+j} \phi\binom{q^{-2 j},-q^{-2 j}}{-q^{-2 i-2 j} ; q^{2}, q^{2} \mathbf{k}^{2}}\left(\mathbf{a}^{-}\right)^{i-j} \quad(i \geq j) \\
& =\left(-q^{2} ; q^{2}\right)_{i+j}\left(\mathbf{a}^{+}\right)^{i-j} \phi\left(\begin{array}{c}
q^{-2 i},-q^{-2 i} \\
-q^{-2 i-2 j}
\end{array} ; q^{2}, q^{2} \mathbf{k}^{2}\right) \quad(i \geq j)
\end{aligned}
$$

Here, $\phi$ is q-hypergeometric series ${ }_{2} \phi_{1}\left(\begin{array}{c}a, b \\ c\end{array} ; q, z\right)=\sum_{m \geq 0} \frac{(a ; q)_{m}(b ; q)_{m}}{(q ; q)_{m}(c ; q)_{m}} z^{m}$
ㅁ $K(z)_{\alpha}^{\gamma}=\operatorname{Tr}_{F_{q}}\left(z^{-\mathrm{h}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \cdots \mathcal{G}_{\alpha_{n}}^{\gamma_{n}}\right)$ decomposes as $K(z)=\oplus_{l \in \mathbb{Z}_{\geq 0}} K_{l}(z)$ and satisfy

$$
K_{l}(z) \circ \pi_{l, z}(b)=\pi_{l, z^{-1}}^{*}(b) \circ K_{l}(z) \quad\left({ }^{\forall} b \in \mathcal{B}_{q}\right)
$$

## Sketch of proof for the formula of $\mathcal{G}$

- Substitute $\mathcal{G}_{i}^{j}$ into

$$
\begin{aligned}
& -\left[\alpha_{2}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}+1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}-1}^{\gamma_{2}}+q^{2\left(\alpha_{1}-\alpha_{2}\right)}\left[\alpha_{1}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}-1}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}+1}^{\gamma_{2}}+\frac{1}{1-q^{2}} q^{2\left(\alpha_{1}-\alpha_{2}+1\right)} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}} \\
= & q^{2\left(-\gamma_{1}+\gamma_{2}\right)}\left[\gamma_{2}\right]_{q^{2}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}+1} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}-1}-\left[\gamma_{1}\right]_{q_{2}} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}-1} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}+1}+\frac{1}{1-q^{2}} q^{2\left(-\gamma_{1}+\gamma_{2}+1\right)} \mathcal{G}_{\alpha_{1}}^{\gamma_{1}} \mathcal{G}_{\alpha_{2}}^{\gamma_{2}}
\end{aligned}
$$

and remove some common factor, then it reduces to bilinear equations for q-hypergeometric series of scalar variables.
$\square$ For example, the case $\alpha_{1}>\gamma_{1}$ and $\alpha_{2}<\gamma_{2}$

$$
\begin{aligned}
& \left.0=u_{1}\left(u_{2}-u_{2}^{-1}\right)\left(-v_{1}^{-1} ; q\right)_{2}\left(q^{-1} u_{1}^{2} v_{1}^{-1} w ; q\right)_{2} \phi\left(\begin{array}{c}
u_{1},-u_{1} \\
-q^{-1} v_{1}
\end{array} ;\right)^{2}\right) \phi\left(\begin{array}{c}
q u_{2},-q u_{2} \\
-q v_{2}
\end{array} ; y\right) \\
& +v_{1}^{-1} u_{2}\left(u_{1} v_{1}^{-1}-u_{1}^{-1} v_{1}\right)\left(-v_{2}^{-1} ; q\right)_{2} \phi\left(\begin{array}{c}
u_{1},-u_{1} \\
-q v_{1}
\end{array} ; w\right) \phi\binom{q^{-1} u_{2},-q^{-1} u_{2}}{-q^{-1} v_{2}} \quad \begin{array}{l}
v_{1}=q \\
w=q \mathbf{k}, y=q^{2 \alpha_{1}+\alpha_{2}-\gamma_{1}-\gamma_{2}+1} \mathbf{k}
\end{array} \\
& -u_{1} v_{2}^{-1}\left(u_{2} v_{2}^{-1}-u_{2}^{-1} v_{2}\right)\left(-v_{1}^{-1} ; q\right)_{2} \phi\left(\begin{array}{c}
q^{-1} u_{1},-q^{-1} u_{1} \\
-q^{-1} v_{1}
\end{array} ; w\right) \phi\left(\begin{array}{c}
u_{2},-u_{2} \\
-q v_{2}
\end{array} ; y\right) \\
& -u_{2}\left(u_{1}-u_{1}^{-1}\right)\left(-v_{2}^{-1} ; q\right)_{2}\left(q^{-1} u_{1}^{2} v_{1}^{1} w ; q\right)_{2} \phi\left(\begin{array}{c}
q u_{1},-q u_{1} \\
-q v_{1}
\end{array} ; w\right) \phi\binom{u_{2},-u_{2}}{-q^{-1} v_{2}} \\
& -(1+q) u_{1} u_{2}\left(v_{1}^{-1}-v_{2}^{-1}\right)\left(1+v_{1}^{-1}\right)\left(1+v_{2}^{-1}\right)\left(1-q^{-1} u_{1}^{2} v_{1}^{-1} w\right) \phi\left(\begin{array}{c}
u_{1},-u_{1} \\
-v_{1}
\end{array} ; w\right) \phi\left(\begin{array}{c}
u_{2}-u_{2} \\
-v_{2}
\end{array} ;\right)
\end{aligned}
$$

Heine's contiguous relations

$$
0=A \phi\left(\begin{array}{c}
q^{-1} u_{1},-u_{1} \\
-q^{-1} v_{1}
\end{array} ; w\right)+B \phi\left(\begin{array}{c}
u_{1},-q^{-1} u_{1} \\
-q^{-1} v_{1}
\end{array} ; w\right) \quad(A, B: \text { linear combination of } \phi)
$$

Actually, we can show $A=B=0$.

## Example of K ( $\mathrm{n}=2, \mathrm{I}=2$ case)

■ We normalized $K_{l}(z)_{\alpha}^{\gamma}$ as $K_{l}(z)_{l \mathbf{e}_{1}}^{l \mathbf{e}_{1}}=1 \quad K(z)|\alpha\rangle=\sum_{\gamma \in B_{l}} K(z)_{\alpha}^{\gamma}|\gamma\rangle$

$$
\begin{aligned}
&|\alpha\rangle \mapsto|\gamma\rangle \\
&|2,0\rangle \mapsto|2,0\rangle+\frac{\left(1+q^{2}\right)\left(1+q^{4}\right) z^{2}}{\left(q^{2}+z\right)\left(q^{4}+z\right)}|0,2\rangle+\frac{\left(1+q^{2}\right) z}{q^{4}+z}|1,1\rangle \\
&|0,2\rangle \mapsto \frac{\left(1+q^{2}\right)\left(1+q^{4}\right)}{\left(q^{2}+z\right)\left(q^{4}+z\right)}|2,0\rangle+|0,2\rangle+\frac{1+q^{2}}{q^{4}+z}|1,1\rangle \\
&|1,1\rangle \mapsto \frac{1+q^{2}}{q^{4}+z}|2,0\rangle+\frac{\left(1+q^{2}\right) z}{q^{4}+z}|0,2\rangle+\frac{z+q^{6} z+q z(2+z)+q^{4} 4}{\left(1+q^{4}\right)\left(q^{2}+z\right)\left(q^{4}+z\right)}|1,1\rangle \\
& \text { (not factorized) }
\end{aligned}
$$

■ For ${ }^{\forall} n \geq 2,{ }^{\forall} l \in \mathbb{Z}_{\geq 0}, K_{l}(z)$ is trigonometric and dense.
■ For $l=1$ cases, our $K_{1}(z)$ reproduces [Gandenberger,99].

## Some specialization for K

- $z=1, q^{-2 l}$
- All the component of K -matrix are factorized for $\alpha, \gamma \in B_{l}$ :

$$
K(1)_{\alpha}^{\gamma}=\frac{\prod_{i=1}^{n}\left(-q^{2} ; q^{2}\right)_{\alpha_{i}}\left(-q^{2} ; q^{2}\right)_{\gamma_{i}}}{\left(-q^{2} ; q^{2}\right)_{l}^{2}}, \quad K\left(q^{-2 l}\right)_{\alpha}^{\gamma}=\frac{q^{2(\gamma, \alpha\rangle} \prod_{i=1}^{n}\left(-q^{2} ; q^{2}\right)_{\alpha_{i}+\gamma_{i}}}{\left(-q^{2} ; q^{2}\right)_{2 l}}
$$

- $q \rightarrow 0$ $\langle\gamma, \alpha\rangle=\sum_{1 \leq i<j \leq n} \gamma_{i} \alpha_{j}$
- Conjecture

$$
\lim _{q \rightarrow 0} K(z)_{\alpha}^{\gamma}=z^{-Q_{0}(\gamma, \alpha)}
$$

$Q_{0}(\gamma, \alpha):=$ Nakayashiki-Yamada's unwinding number.
[Nakayashiki-Yamada,97]

- Example ( $\mathrm{n}=2, \mathrm{l}=2$ )

$$
\begin{aligned}
|\alpha\rangle & \mapsto|\gamma\rangle \\
|2,0\rangle & \mapsto|2,0\rangle+|0,2\rangle+|1,1\rangle \\
|0,2\rangle & \mapsto z^{-2}|2,0\rangle+|0,2\rangle+z^{-1}|1,1\rangle \\
|1,1\rangle & \mapsto z^{-1}|2,0\rangle+|0,2\rangle+z^{-1}|1,1\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=(1,1) \\
& \gamma=(2,0) \\
& \rightarrow Q_{0}((2,0),(1,1))=1
\end{aligned}
$$

## Quantized reflection equation for $\mathcal{G}$

- Does $\mathcal{G}$ satisfy QRE, like the following?

$$
L_{123} G_{24} L_{215} G_{16} \mathcal{K}_{3456}=\mathcal{K}_{3456} G_{16} L_{125} G_{24} L_{213} \in \operatorname{End}\left(\stackrel{1}{V} \otimes \stackrel{2}{V} \otimes \stackrel{3}{F_{p^{2}}} \otimes \stackrel{4}{F_{p}} \otimes \stackrel{5}{F_{p} 2} \otimes \stackrel{6}{F_{p}}\right)
$$

■ Theorem [KOY, (in preparation)]
ㅁ The following equations holds:

$$
\mathcal{R}_{123} \widetilde{\mathcal{G}}_{24} \widetilde{\mathcal{R}}_{215} \widetilde{\mathcal{G}}_{16} \mathcal{K}_{3456}=\mathcal{K}_{3456} \widetilde{\mathcal{G}}_{16} \tilde{\mathcal{R}}_{125} \widetilde{\mathcal{G}}_{24} \overline{\mathcal{R}}_{213} \in \operatorname{End}\left(\frac{1}{F_{q^{2}}} \otimes \stackrel{2}{F_{q^{2}}} \otimes \stackrel{3}{F_{q^{2}}} \otimes \stackrel{4}{F_{q}} \otimes \stackrel{5}{F_{q^{2}}} \otimes \stackrel{6}{F_{q}}\right)
$$

$$
\tilde{\mathcal{G}}_{i}^{j}=\mathrm{q}^{-\mathbf{h}^{2} / 2} \mathcal{G}_{i}^{j} \mathbf{q}^{\mathbf{h}^{2} / 2}
$$

$$
\mathcal{R}, \tilde{\mathcal{R}}, \overline{\mathcal{R}} \simeq \text { the intertwiner of } A_{q^{2}}\left(S L_{3}\right)
$$

$$
\begin{aligned}
& -: V=\mathbb{C} v_{0} \oplus \mathbb{C} v_{1} \\
& -F=\oplus_{m \geq 0} \mathbb{C}|m\rangle
\end{aligned}
$$



## Summary and Outlook

- The fundamental reps

$$
\begin{aligned}
& L_{123} G_{24} L_{215} G_{16} \mathcal{K}_{3456} \\
& =\mathcal{K}_{3456} G_{16} L_{125} G_{24} L_{213} \\
& \quad \downarrow
\end{aligned}
$$

$$
K(z)=\operatorname{Tr}\left(z^{\mathbf{h}} G \cdots G\right)
$$

$K_{l}(z) \circ \rho_{l, z}(b) \stackrel{\downarrow}{=} \rho_{n-l, z^{-1}}(b) \circ K_{l}(z)$

- The symmetric tensor reps

$$
\begin{gathered}
\mathcal{R}_{123} \widetilde{\mathcal{G}}_{24} \widetilde{\mathcal{R}}_{215} \widetilde{\mathcal{G}}_{16} \mathcal{K}_{3456} \\
=\mathcal{K}_{3456} \widetilde{\mathcal{G}}_{16} \widetilde{\mathcal{R}}_{125} \widetilde{\mathcal{G}}_{24} \overline{\mathcal{R}}_{213} \\
K(z)=\operatorname{Tr}\left(z^{-\mathbf{h}} \mathcal{G} \cdots \mathcal{G}\right) \\
\quad \uparrow \\
K_{l}(z) \circ \pi_{l, z}(b)=\pi_{n-l, z^{-1}}(b) \circ K_{l}(z)
\end{gathered}
$$

- Boundary reduction known for ( $L, G, \mathcal{K}$ ): [Kuniba-Pasquier,18]

$$
R^{r, r^{\prime}}(z):=\left\langle\chi_{r}\right| z^{\mathbf{h}} L \cdots L\left|\chi_{r^{\prime}}\right\rangle \quad K^{s, s^{\prime}}(z):=\left\langle\eta_{s}\right| z^{\mathbf{h}} G \cdots G\left|\eta_{s^{\prime}}\right\rangle \quad\left|\chi_{s}\right\rangle=\sum_{m \geq 0} \frac{|s m\rangle}{\left(q^{s s^{2}}\right)_{m}}
$$

They conjecturally satisfy the RE in the following pairs

$$
\left|\eta_{s}\right\rangle=\sum_{m \geq 0} \frac{|s m\rangle}{\left(q^{s^{2}}\right)_{m}}
$$

| $\boldsymbol{R}$ | $\boldsymbol{K}$ | $\boldsymbol{U}_{\boldsymbol{q}}(\widehat{\boldsymbol{g}})$ |
| :---: | :---: | :---: |
| $R^{1,1}(z)$ | $K^{1,1}(z), K^{1,2}(z), K^{2,1}(z), K^{2,2}(z)$ | $\boldsymbol{U}_{\boldsymbol{q}}\left(\boldsymbol{D}_{\boldsymbol{n + 1}}^{(2)}\right)$ |
| $R^{2,1}(z)$ | $K^{2,1}(z), K^{2,2}(z)$ | $\boldsymbol{U}_{\boldsymbol{q}}\left(\boldsymbol{B}_{\boldsymbol{n}}^{(\mathbf{1})}\right)$ |
| $R^{2,2}(z)$ | $K^{2,2}(z)$ | $\boldsymbol{U}_{\boldsymbol{q}}\left(\boldsymbol{D}_{\boldsymbol{n}}^{(\mathbf{1})}\right)$ |

How about $(\mathcal{R}, \tilde{\mathcal{G}}, \mathcal{K})$ ?

$$
A_{q}\left(S L_{3}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{3} \quad \bigcirc^{\pi_{1}} \bigcirc^{\pi_{2}}
$$

$$
\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
\mathbf{a}_{1} & \mathbf{k} & 0 \\
-q \mathbf{k} & \mathbf{a}^{+} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{a}^{-} & \mathbf{k} \\
0 & -q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right)
$$

$$
W\left(s l_{3}\right)=\left\langle s_{1}, s_{2}\right\rangle \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
$$

$$
\longmapsto \pi_{1} \otimes \pi_{2} \otimes \pi_{1} \simeq \pi_{2} \otimes \pi_{1} \otimes \pi_{2}
$$

■ By Schur's Lemma, there exists the unique intertwiner $\Phi$ s.t.

$$
\Phi \circ \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta\left(t_{i j}\right)\right)=\pi_{2} \otimes \pi_{1} \otimes \pi_{2}\left(\Delta\left(t_{i j}\right)\right) \circ \Phi
$$

## Appendix: 3dR

$\square$ Set $\mathcal{R}=\Phi P_{13} \in \operatorname{End}\left(\left(F_{q}\right)^{\otimes 3}\right) \quad P_{13}(x \otimes y \otimes z)=z \otimes y \otimes x$ $\mathcal{R} \circ \pi_{1} \otimes \pi_{2} \otimes \pi_{1}\left(\Delta^{\mathrm{op}}\left(t_{i j}\right)\right)=\pi_{2} \otimes \pi_{1} \otimes \pi_{2}\left(\Delta\left(t_{i j}\right)\right) \circ \mathcal{R} \in \operatorname{End}\left(\left(F_{q}\right)^{\otimes 3}\right)$

Here, $\Delta^{\mathrm{op}}\left(t_{i j}\right)=P_{13} \Delta\left(t_{i j}\right) P_{13}$
■ Denote its component as $\mathcal{R}|i\rangle \otimes|j\rangle \otimes|k\rangle=\sum_{a, b, c} \mathcal{R}_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle$

- Prop [KV94]
$\square$ With the normalization $\mathcal{R}|0\rangle \otimes|0\rangle \otimes|0\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle$

$$
\begin{array}{r}
\mathcal{R}_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \frac{\left(q^{2}\right)_{c+\mu}}{\left(q^{2}\right)_{c}}\binom{i}{\mu}_{q^{2}}\binom{j}{\lambda}_{q^{2}} \\
\binom{a}{b}_{q}=\frac{(q)_{a}}{(q)_{b}(q)_{a-b}},(q)_{k}=\prod_{l=1}^{k}\left(1-q^{l}\right)
\end{array}
$$

- Let $\mathcal{R}|i\rangle \otimes|j\rangle \otimes|k\rangle=\sum_{a, b}|a\rangle \otimes|b\rangle \otimes \mathcal{R}_{i, j}^{a, b}|k\rangle$

$$
\mathcal{R}_{i, j}^{a, b}=\delta_{i+j}^{a+b} \sum_{\lambda+\mu=b}(-1)^{\lambda} q^{\lambda+\mu^{2}-i b}\binom{i}{\mu}_{q^{2}}\binom{j}{\lambda}_{q^{2}}\left(\mathbf{a}^{-}\right)^{\mu}\left(\mathbf{a}^{+}\right)^{j-\lambda} \mathbf{k}^{i-\lambda-\mu}
$$

## Appendix: Tetrahedron equation

- Theorem [KV94]
- $\mathcal{R}$ satisfies the tetrahedron eq.

$$
\mathcal{R}_{124} \mathcal{R}_{135} \mathcal{R}_{236} \mathcal{R}_{456}=\mathcal{R}_{456} \mathcal{R}_{236} \mathcal{R}_{135} \mathcal{R}_{124} \in \operatorname{End}\left(F_{q}^{\otimes 6}\right)
$$

- Sketch of Proof
$\square$ Consider $A_{q}\left(s l_{4}\right)$ and $W\left(s l_{4}\right)=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$
$\square \mathrm{TE}$ is given by considering the intertwiner for $s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=s_{3} s_{2} s_{3} s_{1} s_{2} s_{3}$ in 2 different ways. Here we use the following intertwiners:

| isomorphism | intertwiner |
| :---: | :---: |
| $\pi_{1} \otimes \pi_{3} \simeq \pi_{3} \otimes \pi_{1}$ | $P_{12}$ |
| $\pi_{1} \otimes \pi_{2} \otimes \pi_{1} \simeq \pi_{2} \otimes \pi_{1} \otimes \pi_{2}$ | $\Phi=\mathcal{R} P_{13}$ |
| $\pi_{2} \otimes \pi_{3} \otimes \pi_{2} \simeq \pi_{3} \otimes \pi_{2} \otimes \pi_{3}$ | $\Phi=\mathcal{R} P_{13}$ |

- TE is 3d analog of YBE and gives the sufficient condition for the commutativity of layer-to-layer transfer matrix.

