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◼ Introduction: reflection maps from Yang-Baxter maps

◼

◼
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Integrability in 2D

◼ Bulk: Yang-Baxter equation ◼ Boundary: reflection equation
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◼ Setup1: R & K are matrices on linear spaces

◼ Setup2: R & K are maps on sets (set-theoretical solution) [Drinfeld92]



Set-theoretical solutions to YBE & RE

◼ We call set-theoretical solutions to YBE Yang-Baxter maps, and so on.

◼ Yang-Baxter maps have been extensively studied in connection with 
various topics.

◼ Several reflection maps are constructed

 via directly solving the reflection equation

Later, these solutions are 𝑞-melted by using coideal subalgebras of 𝑈𝑞.

 from Yang-Baxter maps

 by ring-theoretic methods

◼ Here, we briefly review a result of [Kuniba-Okado19].
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Combinatorial 𝑅 matrices

◼ KR crystal for 𝐴𝑛−1
(1)

 𝐵𝑘,𝑙 = {SST of 𝑘 × 𝑙 rectangular shape with letters from {1,2,…,n}}

SST: semi-standard tableaux

1 ≤ 𝑘 ≤ 𝑛 − 1, 𝑙 ≥ 1

 ǁ𝑒𝑖 , ሚ𝑓𝑖: 𝐵
𝑘,𝑙 → 𝐵𝑘,𝑙 ∪ {0} (Kashiwara operators)

 For KR crystals 𝐵1, 𝐵2, the actions of Kashiwara operators are also defined 
on 𝐵1 ⊗𝐵2 = {𝑏1 ⊗𝑏2|𝑏1 ∈ 𝐵1, 𝑏2 ∈ 𝐵2} and 𝐵1 ⊗𝐵2 is connected.

◼ A map 𝑅𝐵1,𝐵2: 𝐵1 ⊗𝐵2 → 𝐵2 ⊗𝐵1 given by

is uniquely determined (combinatorial 𝑅 matrices).

 The action can be calculated by the tableau product rule.

◼ Combinatorial 𝑅 matrices satisfy YBE from 𝐵1 ⊗𝐵2 ⊗𝐵3 to 
𝐵3 ⊗𝐵2 ⊗𝐵1:
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1 1 3

2 4 6
e.g.

𝑅𝐵1,𝐵2
෨𝑘𝑖 𝑏1 ⊗𝑏2 = ෨𝑘𝑖(𝑅𝐵1,𝐵2(𝑏1 ⊗𝑏2)) (෨𝑘𝑖 = ǁ𝑒𝑖 , ሚ𝑓𝑖)

(1 ⊗ 𝑅𝐵1,𝐵2)(𝑅𝐵1,𝐵3 ⊗1)(1⊗ 𝑅𝐵2,𝐵3) = 𝑅𝐵2,𝐵3 ⊗1 1⊗ 𝑅𝐵1,𝐵3 𝑅𝐵1,𝐵2 ⊗1

≤ ≤< < <



Combinatorial 𝐾 matrices

◼ We define ∨:𝐵𝑘,𝑙 → 𝐵𝑛−𝑘,𝑙 by

 𝜆𝑖 ∈ ℕ𝑘 , ഥ𝜆𝑖 ∈ ℕ𝑛−𝑘

 The complement is taken over 1,2,⋯ , 𝑛 .

◼ Proposition [Kuniba-Okado19]:

 For a KR crystal 𝐵, we have 𝑅𝐵∨,𝐵 𝑏∨ ⊗𝑏 = 𝑐 ⊗ 𝑐∨.

◼ Definition:

 Using 𝑏 and 𝑐 above, we define the combinatorial 𝐾 matrix by

◼ Theorem: [Kuniba-Okado19]

 The combinatorial 𝑅 and 𝐾 matrices satisfy RE from 𝐵1 ⊗𝐵2 → 𝐵1
∨ ⊗𝐵2

∨:
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for  𝑏 = 𝜆1 𝜆2 𝜆𝑙𝑏∨ = 𝜆𝑙 𝜆2 𝜆1 𝑛 − 𝑘 𝑘

𝐾𝐵: 𝐵 → 𝐵∨, 𝑏 → 𝑐∨

𝑏∨ 𝑏

𝑐 𝑐∨

𝑅𝐵2∨,𝐵1∨(𝐾𝐵2 ⊗1)𝑅𝐵1∨,𝐵2 𝐾𝐵1 ⊗1 = 𝐾𝐵1 ⊗1 𝑅𝐵2∨,𝐵1 𝐾𝐵2 ⊗1 𝑅𝐵1,𝐵2



Key lemma for reflection equation

◼ Lemma:

◼ Proof:

 By repeated uses of YBE, we have the above equation.
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𝐵1

𝐵2𝐵2
∨

𝐵1
∨ 𝐵1

∨

𝐵2
∨

𝐵1

𝐵2

(𝑅𝐵2∨,𝐵1∨𝑅 𝐵1,𝐵2
)𝑅𝐵2∨,𝐵2(𝑅𝐵1∨,𝐵2𝑅𝐵2∨,𝐵1)𝑅𝐵1∨,𝐵1

= 𝑅𝐵1∨,𝐵1(𝑅𝐵2∨,𝐵1𝑅𝐵1∨,𝐵2)𝑅𝐵2∨,𝐵2(𝑅 𝐵1,𝐵2
𝑅𝐵2∨,𝐵1∨)



Proof of reflection equation

◼ Sketch of proof:

 Input 𝑏𝑖 , 𝑐𝑖 on 𝐵1, 𝐵2 and their duals on 𝐵1
∨, 𝐵2

∨.

 Use 𝑅𝐵∨,𝐵 𝑏∨ ⊗𝑏 = 𝑐 ⊗ 𝑐∨.

 Use 𝑅𝐵1,𝐵2 𝑏1 ⊗𝑏2 = 𝑐2 ⊗ 𝑐1 ⇒ 𝑅𝐵2∨,𝐵1∨ 𝑏2
∨ ⊗𝑏1

∨ = 𝑐1
∨ ⊗ 𝑐2

∨ .

 Just viewing the right parts of both sides, we then obtain RE.
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◼

◼ Main part: 3D reflection maps from tetrahedron maps

◼
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Bulk Boundary

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

Integrability in 3D 10/27

◼ Tetrahedron and 3D reflection equation are conditions for 
factorization of string scattering amplitude in 2+1D. 

◼ Tetrahedron equation ◼ 3D reflection equation



Bulk Boundary

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

Integrability in 3D 11/27

◼ Tetrahedron and 3D reflection equation are conditions for 
factorization of string scattering amplitude in 2+1D. 

◼ Several tetrahedron maps are known although less systematically 
than Yang-Baxter maps.

 Solutions to the local YBE

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐴2) and their geometric liftings

 Solutions for relations which semi-invariants for some discrete KP 
equations satisfy

◼ On the other hand, there are very few known 3D reflection maps.

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐵2) and 𝑈𝑞(𝐶2), and their geometric liftings

[Sergeev98]

[Kuniba-Okado12]

[Kassotakis-Nieszporski-Papageorgiou-Tongas19]

[Kuniba-Okado12]



Notation 12/27

◼ Let 𝑋 denote an arbitrary set and 𝑥𝑖 its elements.

◼ We set the transposition 𝑃𝑖𝑗: 𝑋
𝑛 → 𝑋𝑛 by

◼ Let 𝐑:𝑋3 → 𝑋3 denote a map given by

 For 𝑖 < 𝑗 < 𝑘, we define 𝐑𝑖𝑗𝑘: 𝑋
𝑛 → 𝑋𝑛 by

 Otherwise, we define 𝐑𝑖𝑗𝑘: 𝑋
𝑛 → 𝑋𝑛 by sandwiching 𝑅 between the 

permutations which sort (𝑖, 𝑗, 𝑘) in ascending order.

 For example, if 𝑖 > 𝑗 > 𝑘, we define 𝐑𝑖𝑗𝑘 = 𝑃𝑖𝑘𝐑𝑘𝑗𝑖𝑃𝑖𝑘.

◼ We use the same notation for 𝐉: 𝑋4 → 𝑋4.



Tetrahedron maps

◼ Definition:
 Let 𝐑: 𝑋3 → 𝑋3 denote a map.

 We call 𝐑 tetrahedron map if it satisfies the tetrahedron equation on 𝑋6:

 We call 𝐓 the tetrahedral composite of the tetrahedron map 𝐑.

◼ We call 𝐑 involutive if 𝐑2 = id and symmetric if  𝐑123 = 𝐑321.
 For involutive and symmetric tetrahedron maps, (∗) corresponds to the 

usual tetrahedron equation.
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3D reflection maps 14/27

◼ Definition:
 Let J: 𝑋4 → 𝑋4 denote a map.

 We set a tetrahedron map by 𝐑:𝑋3 → 𝑋3.

 We call 𝐉 3D reflection map if it satisfies the 3D reflection equation on 𝑋9:

[Isaev-Kulish97]



Boundarization

◼ We set the subset of 𝑋6 by 𝑌 = {(𝑥1, ⋯ , 𝑥6) ∣ 𝑥2 = 𝑥3, 𝑥5 = 𝑥6}.
 We set 𝜙: 𝑋4 → 𝑌 by                                                                  (embedding)

 We set 𝜑: 𝑌 → 𝑋4 by                                                                  (projection)

◼ Definition:

 Let 𝐑: 𝑋3 → 𝑋3 denote a tetrahedron map and 𝐓 its tetrahedral composite.

 We call 𝐑 boundarizable if the following condition is satisfied:

 In that case, we define the boundarization 𝐉: 𝑋4 → 𝑋4 of 𝐑 by
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Main theorem

◼ Theorem:

 Let 𝐑: 𝑋3 → 𝑋3 denote an involutive, symmetric and boundarizable
tetrahedron map, and 𝐉: 𝑋4 → 𝑋4 its boundarization.

 Then they satisfy 3D reflection equation:
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Key lemma for main theorem

◼ Lemma:
 Let 𝐑: 𝑋3 → 𝑋3 denote an involutive and symmetric tetrahedron map. 

Then we have the following identiy on 𝑋15:

◼ Proof:
 By repeated uses of TE, we have the above equation.
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̅ : mirrored space



Figure for the identity on 𝑋15 18/27



Figure for 3D reflection equation 19/27



Proof of main theorem

◼ Sketch of proof:

 Let 𝐓 denote the tetrahedral composite of 𝐑.

 By using 𝐓, the identify in the previous lemma is written as follows:

 Let us act both sides of (∗) on ``mirrored” inputs (e.g. input 𝑥5 for both 5, ത5).

 By applying                                           (cutting and reconnection), 
we then obtain the direct product of 3DRE.
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◼

◼

◼ Examples

 Birational transition map

 Sergeev’s electrical solution

 Two-component solution associated with soliton equation 
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Example1: birational transition map

◼ We set 𝐑:ℝ>0
3 → ℝ>0

3 by

 This map is characterized as the transition map of parametrizations of 
the positive part of 𝑆𝐿3:

 Actually, the transition map for 𝑆𝐿4 is the tetrahedral composite of 𝐑
and we have TE for 𝐑 by considering 𝐓 in two ways.

 This tetrahedron map was also derived in the context of the local YBE 
and by considering semi-invariants for discrete AKP equation.

 We can verify 𝐑 is involutive, symmetric and boundarizable.
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[Lusztig94]

[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

[Kuniba-Okado12]



Example1: birational transition map

◼ The associated 3D reflection map J: ℝ>0
4 → ℝ>0

4 is calculated as 
follows:

 Actually, (𝐑, 𝐉) is a known solution to 3D reflection equation.

 𝐉 is characterized as the transition map of parametrizations of the 
positive part of 𝑆𝑃4:

 This correspondence is a consequence from folding the Dynkin
diagram of 𝐴3 into one of 𝐶2.
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[Kuniba-Okado12]

[Berenstein-Zelevinsky01], [Lusztig11]



Example2: Sergeev’s electrical solution

◼ For 𝜆 ∈ ℂ, we set the tetrahedron map 𝐑(𝜆): ℂ3 → ℂ3 by

 This solution was derived in the context of the local YBE and by 
considering semi-invariants for discrete BKP equation.

 𝐑(𝜆) is also characterized as the relation which elements of the 
positive part of electorical Lie groups of type A satisfy:

 We can verify 𝐑(𝜆) is involutive, symmetric and boundarizable.

◼ The associated 3D reflection map 𝐉(𝜆): ℂ4 → ℂ4 is calculated as 
follows:
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[Lam-Pylyavskyy15]

[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]



Example3: Two component solution

◼ We set the tetrahedron map 𝐑: (ℂ2)3→ (ℂ2)3 by

 This solution was derived by considering semi-invariants for discrete 
modified KP equation.

 This gives the previous birational transition map when we set 𝑦𝑖 = 1.

 We can verify 𝐑 is involutive, symmetric and boundarizable.

25/27

[Kassotakis-Nieszporski-Papageorgiou-Tongas19]



Example3: Two component solution

◼ The associated 3D reflection map J: (ℂ2)4→ (ℂ2)4 is calculated 
as follows:
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Concluding remarks

◼ Summary:

 We present a method for obtaining 3D reflection maps by using known 
tetrahedron maps. The theorem is an analog of the results in 2D.

 By applying our theorem to known tetrahedron maps, we obtain 
several 3D reflection maps which include new solutions.

◼ Remark:

 Our theorem can be extended to inhomogeneous cases, that is, the 
case tetrahedron maps are defined on direct product of different sets.
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