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◼ Introduction: reflection maps from Yang-Baxter maps

◼

◼






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Integrability in 2D

◼ Bulk: Yang-Baxter equation ◼ Boundary: reflection equation
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◼ Setup1: R & K are matrices on linear spaces

◼ Setup2: R & K are maps on sets (set-theoretical solution) [Drinfeld92]



Set-theoretical solutions to YBE & RE

◼ We call set-theoretical solutions to YBE Yang-Baxter maps, and so on.

◼ Yang-Baxter maps have been extensively studied in connection with 
various topics.

◼ Several reflection maps are constructed

 via directly solving the reflection equation

Later, these solutions are 𝑞-melted by using coideal subalgebras of 𝑈𝑞.

 from Yang-Baxter maps

 by ring-theoretic methods

◼ Here, we briefly review a result of [Kuniba-Okado19].
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[Veselov07]

[Kuniba-Okado-Yamada05]

[Caudrelier-Zhang14], [Kuniba-Okado19]

[Smoktunowicz-Vendramin-Weston20]

[Kuniba-Okado-Y19], [Kusano-Okado20]



Combinatorial 𝑅 matrices

◼ KR crystal for 𝐴𝑛−1
(1)

 𝐵𝑘,𝑙 = {SST of 𝑘 × 𝑙 rectangular shape with letters from {1,2,…,n}}

SST: semi-standard tableaux

1 ≤ 𝑘 ≤ 𝑛 − 1, 𝑙 ≥ 1

 ǁ𝑒𝑖 , ሚ𝑓𝑖: 𝐵
𝑘,𝑙 → 𝐵𝑘,𝑙 ∪ {0} (Kashiwara operators)

 For KR crystals 𝐵1, 𝐵2, the actions of Kashiwara operators are also defined 
on 𝐵1 ⊗𝐵2 = {𝑏1 ⊗𝑏2|𝑏1 ∈ 𝐵1, 𝑏2 ∈ 𝐵2} and 𝐵1 ⊗𝐵2 is connected.

◼ A map 𝑅𝐵1,𝐵2: 𝐵1 ⊗𝐵2 → 𝐵2 ⊗𝐵1 given by

is uniquely determined (combinatorial 𝑅 matrices).

 The action can be calculated by the tableau product rule.

◼ Combinatorial 𝑅 matrices satisfy YBE from 𝐵1 ⊗𝐵2 ⊗𝐵3 to 
𝐵3 ⊗𝐵2 ⊗𝐵1:
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1 1 3

2 4 6
e.g.

𝑅𝐵1,𝐵2
෨𝑘𝑖 𝑏1 ⊗𝑏2 = ෨𝑘𝑖(𝑅𝐵1,𝐵2(𝑏1 ⊗𝑏2)) (෨𝑘𝑖 = ǁ𝑒𝑖 , ሚ𝑓𝑖)

(1 ⊗ 𝑅𝐵1,𝐵2)(𝑅𝐵1,𝐵3 ⊗1)(1⊗ 𝑅𝐵2,𝐵3) = 𝑅𝐵2,𝐵3 ⊗1 1⊗ 𝑅𝐵1,𝐵3 𝑅𝐵1,𝐵2 ⊗1

≤ ≤< < <



Combinatorial 𝐾 matrices

◼ We define ∨:𝐵𝑘,𝑙 → 𝐵𝑛−𝑘,𝑙 by

 𝜆𝑖 ∈ ℕ𝑘 , ഥ𝜆𝑖 ∈ ℕ𝑛−𝑘

 The complement is taken over 1,2,⋯ , 𝑛 .

◼ Proposition [Kuniba-Okado19]:

 For a KR crystal 𝐵, we have 𝑅𝐵∨,𝐵 𝑏∨ ⊗𝑏 = 𝑐 ⊗ 𝑐∨.

◼ Definition:

 Using 𝑏 and 𝑐 above, we define the combinatorial 𝐾 matrix by

◼ Theorem: [Kuniba-Okado19]

 The combinatorial 𝑅 and 𝐾 matrices satisfy RE from 𝐵1 ⊗𝐵2 → 𝐵1
∨ ⊗𝐵2

∨:
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for  𝑏 = 𝜆1 𝜆2 𝜆𝑙𝑏∨ = 𝜆𝑙 𝜆2 𝜆1 𝑛 − 𝑘 𝑘

𝐾𝐵: 𝐵 → 𝐵∨, 𝑏 → 𝑐∨

𝑏∨ 𝑏

𝑐 𝑐∨

𝑅𝐵2∨,𝐵1∨(𝐾𝐵2 ⊗1)𝑅𝐵1∨,𝐵2 𝐾𝐵1 ⊗1 = 𝐾𝐵1 ⊗1 𝑅𝐵2∨,𝐵1 𝐾𝐵2 ⊗1 𝑅𝐵1,𝐵2



Key lemma for reflection equation

◼ Lemma:

◼ Proof:

 By repeated uses of YBE, we have the above equation.

7/27

𝐵1

𝐵2𝐵2
∨

𝐵1
∨ 𝐵1

∨

𝐵2
∨

𝐵1

𝐵2

(𝑅𝐵2∨,𝐵1∨𝑅 𝐵1,𝐵2
)𝑅𝐵2∨,𝐵2(𝑅𝐵1∨,𝐵2𝑅𝐵2∨,𝐵1)𝑅𝐵1∨,𝐵1

= 𝑅𝐵1∨,𝐵1(𝑅𝐵2∨,𝐵1𝑅𝐵1∨,𝐵2)𝑅𝐵2∨,𝐵2(𝑅 𝐵1,𝐵2
𝑅𝐵2∨,𝐵1∨)



Proof of reflection equation

◼ Sketch of proof:

 Input 𝑏𝑖 , 𝑐𝑖 on 𝐵1, 𝐵2 and their duals on 𝐵1
∨, 𝐵2

∨.

 Use 𝑅𝐵∨,𝐵 𝑏∨ ⊗𝑏 = 𝑐 ⊗ 𝑐∨.

 Use 𝑅𝐵1,𝐵2 𝑏1 ⊗𝑏2 = 𝑐2 ⊗ 𝑐1 ⇒ 𝑅𝐵2∨,𝐵1∨ 𝑏2
∨ ⊗𝑏1

∨ = 𝑐1
∨ ⊗ 𝑐2

∨ .

 Just viewing the right parts of both sides, we then obtain RE.
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𝑏1

𝑏𝑜

𝑏𝑖
∨

𝑏1
∨

𝑏𝑜
∨

𝑐2

𝑐𝑜

𝑐𝑖
∨

𝑏2 𝑏2
∨

𝑐1𝑐1
∨

𝑐2
∨

𝑐𝑜
∨

𝐵1

𝐵2𝐵2
∨

𝐵1
∨

𝑏3

𝑏4

𝑏𝑜

𝑏𝑖
∨

𝑏3
∨

𝑏4
∨

𝑏𝑜
∨

𝑏𝑖

𝑐𝑖

𝑏𝑖

𝑐𝑖

𝑐3

𝑐4

𝑐𝑜

𝑐𝑖
∨

𝑐3
∨

𝑐4
∨

𝑐o
∨

𝐵1
∨

𝐵2
∨

𝐵1

𝐵2

=
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◼

◼ Main part: 3D reflection maps from tetrahedron maps

◼







P.10~20



Bulk Boundary

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

Integrability in 3D 10/27

◼ Tetrahedron and 3D reflection equation are conditions for 
factorization of string scattering amplitude in 2+1D. 

◼ Tetrahedron equation ◼ 3D reflection equation



Bulk Boundary

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

Integrability in 3D 11/27

◼ Tetrahedron and 3D reflection equation are conditions for 
factorization of string scattering amplitude in 2+1D. 

◼ Several tetrahedron maps are known although less systematically 
than Yang-Baxter maps.

 Solutions to the local YBE

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐴2) and their geometric liftings

 Solutions for relations which semi-invariants for some discrete KP 
equations satisfy

◼ On the other hand, there are very few known 3D reflection maps.

 Transition maps of Lusztig’s parametrizations of the canonical basis of 
𝑈𝑞(𝐵2) and 𝑈𝑞(𝐶2), and their geometric liftings

[Sergeev98]

[Kuniba-Okado12]

[Kassotakis-Nieszporski-Papageorgiou-Tongas19]

[Kuniba-Okado12]



Notation 12/27

◼ Let 𝑋 denote an arbitrary set and 𝑥𝑖 its elements.

◼ We set the transposition 𝑃𝑖𝑗: 𝑋
𝑛 → 𝑋𝑛 by

◼ Let 𝐑:𝑋3 → 𝑋3 denote a map given by

 For 𝑖 < 𝑗 < 𝑘, we define 𝐑𝑖𝑗𝑘: 𝑋
𝑛 → 𝑋𝑛 by

 Otherwise, we define 𝐑𝑖𝑗𝑘: 𝑋
𝑛 → 𝑋𝑛 by sandwiching 𝑅 between the 

permutations which sort (𝑖, 𝑗, 𝑘) in ascending order.

 For example, if 𝑖 > 𝑗 > 𝑘, we define 𝐑𝑖𝑗𝑘 = 𝑃𝑖𝑘𝐑𝑘𝑗𝑖𝑃𝑖𝑘.

◼ We use the same notation for 𝐉: 𝑋4 → 𝑋4.



Tetrahedron maps

◼ Definition:
 Let 𝐑: 𝑋3 → 𝑋3 denote a map.

 We call 𝐑 tetrahedron map if it satisfies the tetrahedron equation on 𝑋6:

 We call 𝐓 the tetrahedral composite of the tetrahedron map 𝐑.

◼ We call 𝐑 involutive if 𝐑2 = id and symmetric if  𝐑123 = 𝐑321.
 For involutive and symmetric tetrahedron maps, (∗) corresponds to the 

usual tetrahedron equation.
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3D reflection maps 14/27

◼ Definition:
 Let J: 𝑋4 → 𝑋4 denote a map.

 We set a tetrahedron map by 𝐑:𝑋3 → 𝑋3.

 We call 𝐉 3D reflection map if it satisfies the 3D reflection equation on 𝑋9:

[Isaev-Kulish97]



Boundarization

◼ We set the subset of 𝑋6 by 𝑌 = {(𝑥1, ⋯ , 𝑥6) ∣ 𝑥2 = 𝑥3, 𝑥5 = 𝑥6}.
 We set 𝜙: 𝑋4 → 𝑌 by                                                                  (embedding)

 We set 𝜑: 𝑌 → 𝑋4 by                                                                  (projection)

◼ Definition:

 Let 𝐑: 𝑋3 → 𝑋3 denote a tetrahedron map and 𝐓 its tetrahedral composite.

 We call 𝐑 boundarizable if the following condition is satisfied:

 In that case, we define the boundarization 𝐉: 𝑋4 → 𝑋4 of 𝐑 by
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Main theorem

◼ Theorem:

 Let 𝐑: 𝑋3 → 𝑋3 denote an involutive, symmetric and boundarizable
tetrahedron map, and 𝐉: 𝑋4 → 𝑋4 its boundarization.

 Then they satisfy 3D reflection equation:
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Key lemma for main theorem

◼ Lemma:
 Let 𝐑: 𝑋3 → 𝑋3 denote an involutive and symmetric tetrahedron map. 

Then we have the following identiy on 𝑋15:

◼ Proof:
 By repeated uses of TE, we have the above equation.
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̅ : mirrored space



Figure for the identity on 𝑋15 18/27



Figure for 3D reflection equation 19/27



Proof of main theorem

◼ Sketch of proof:

 Let 𝐓 denote the tetrahedral composite of 𝐑.

 By using 𝐓, the identify in the previous lemma is written as follows:

 Let us act both sides of (∗) on ``mirrored” inputs (e.g. input 𝑥5 for both 5, ത5).

 By applying                                           (cutting and reconnection), 
we then obtain the direct product of 3DRE.

20/27



21/27Outline

◼

◼

◼ Examples

 Birational transition map

 Sergeev’s electrical solution

 Two-component solution associated with soliton equation 

P.22~26



Example1: birational transition map

◼ We set 𝐑:ℝ>0
3 → ℝ>0

3 by

 This map is characterized as the transition map of parametrizations of 
the positive part of 𝑆𝐿3:

 Actually, the transition map for 𝑆𝐿4 is the tetrahedral composite of 𝐑
and we have TE for 𝐑 by considering 𝐓 in two ways.

 This tetrahedron map was also derived in the context of the local YBE 
and by considering semi-invariants for discrete AKP equation.

 We can verify 𝐑 is involutive, symmetric and boundarizable.
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[Lusztig94]

[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

[Kuniba-Okado12]



Example1: birational transition map

◼ The associated 3D reflection map J: ℝ>0
4 → ℝ>0

4 is calculated as 
follows:

 Actually, (𝐑, 𝐉) is a known solution to 3D reflection equation.

 𝐉 is characterized as the transition map of parametrizations of the 
positive part of 𝑆𝑃4:

 This correspondence is a consequence from folding the Dynkin
diagram of 𝐴3 into one of 𝐶2.
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[Kuniba-Okado12]

[Berenstein-Zelevinsky01], [Lusztig11]



Example2: Sergeev’s electrical solution

◼ For 𝜆 ∈ ℂ, we set the tetrahedron map 𝐑(𝜆): ℂ3 → ℂ3 by

 This solution was derived in the context of the local YBE and by 
considering semi-invariants for discrete BKP equation.

 𝐑(𝜆) is also characterized as the relation which elements of the 
positive part of electorical Lie groups of type A satisfy:

 We can verify 𝐑(𝜆) is involutive, symmetric and boundarizable.

◼ The associated 3D reflection map 𝐉(𝜆): ℂ4 → ℂ4 is calculated as 
follows:
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[Lam-Pylyavskyy15]

[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]



Example3: Two component solution

◼ We set the tetrahedron map 𝐑: (ℂ2)3→ (ℂ2)3 by

 This solution was derived by considering semi-invariants for discrete 
modified KP equation.

 This gives the previous birational transition map when we set 𝑦𝑖 = 1.

 We can verify 𝐑 is involutive, symmetric and boundarizable.
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[Kassotakis-Nieszporski-Papageorgiou-Tongas19]



Example3: Two component solution

◼ The associated 3D reflection map J: (ℂ2)4→ (ℂ2)4 is calculated 
as follows:
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Concluding remarks

◼ Summary:

 We present a method for obtaining 3D reflection maps by using known 
tetrahedron maps. The theorem is an analog of the results in 2D.

 By applying our theorem to known tetrahedron maps, we obtain 
several 3D reflection maps which include new solutions.

◼ Remark:

 Our theorem can be extended to inhomogeneous cases, that is, the 
case tetrahedron maps are defined on direct product of different sets.
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