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B Introduction: reflection maps from Yang-Baxter maps P.3~8
B Main part: 3D reflection maps from tetrahedron maps P.10~20
B Examples P22~26

O Birational transition map
O Sergeev's electrical solution
O Two-component solution associated with soliton equation




Integrability in 2D 3/27

B Bulk: Yang-Baxter equation B Boundary: reflection equation
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B Setupl: R & K are matrices on linear spaces

B Setup2: R & K are maps on sets (set-theoretical solution) [Drinfeld92]




Set-theoretical solutions to YBE & RE 4/27

B We call set-theoretical solutions to YBE Yang-Baxter maps, and so on.

B Yang-Baxter maps have been extensively studied in connection with
various topics. [Veselov07]

M Several reflection maps are constructed
O via directly solving the reflection equation [Kuniba-Okado-Yamada05]

OLater, these solutions are g-melted by using coideal subalgebras of U,,.
[Kuniba-Okado-Y19], [Kusano-Okado20]

O from Yang-Baxter maps [Caudrelier-Zhang14], [Kuniba-Okado19]
O by ring-theoretic methods [Smoktunowicz-Vendramin-Weston20]

B Here, we briefly review a result of [Kuniba-Okado19].



Combinatorial R matrices 5/27

B KR crystal for A,(ll_)1
O B*! = {SST of k x | rectangular shape with letters from {1,2,...,n}}

OSST: semi-standard tableaux 14143
Ol<k<n-11>1 e.g. FATATA
O ¢, f;: B*' - B®! u {0} (Kashiwara operators) 21 416"

O For KR crystals B;, By, the actions of Kashiwara operators are also defined
onB; ® B, = {b; ® b,|b; € By,b, € B,} and B; ® B, is connected.

B Amap Rg p,:B; ® B, » B, ® By given by

RBl,BZ (Ei(b1 X bz)) = Ei(RBl,Bz (b1 & by)) (Ei — éi»fi)

is uniquely determined (combinatorial R matrices).
O The action can be calculated by the tableau product rule.

B Combinatorial R matrices satisfy YBE from B; @ B, @ B; to
B; ® B, ® By

1 RBl,Bz)(RBl,B3 XNARX RBZ,B3) = (RBZ,B3 X 1)(1 03¢ 1331,12?3)(}3191,32 X 1)



Combinatorial K matrices 6/27

B We define v: B¥! —» Bn=Fki by

bV = Al AZ /11 ] n—k for b = Al Az /’ll -k

O A, € N¥, 1, e N*°K

O The complement is taken over {1,2, -+, n}. C
B Proposition [Kuniba-Okado19]:
O For a KR crystal B, we have Rgv 3 (bY @ b) = c @ c".
b

B Definition:
O Using b and ¢ above, we define the combinatorial K matrix by

Kgz:B > BY,b - c"

B Theorem: [Kuniba-Okado19]
O The combinatorial R and K matrices satisfy RE from B; ® B, - B @ By:

RB}’,B}’(KBZ X DRB}/,BZ (K31 ® 1) = (K31 ® 1) RB;’,Bl (KBz ® 1)RB1,Bz




Key lemma for reflection equation 7/27

BY Bl Bi/ Bl

(RB}/ ,BY R By, BZ)RB;’ ,B (RBY B, RB}’ ,Bl)RB\l/ ,B1

= RB\{,Bl (RB;’,BlRB}’,BZ)RB;’,BZ (R Bl’BzRB;’,By)

O By repeated uses of YBE, we have the above equation.



Proof of reflection equation 8/27

B Sketch of proof:
O Input b;, ¢; on By, B, and their duals on BY, BJ.
O UseRgpvz (Y@ b)=c®c".
O Use Rg, p, (b1 ® b)) = ¢, ® ¢y = Rpy gy (b; @ by) =cf ®cj.
O Just viewing the right parts of both sides, we then obtain RE.
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B Introduction: reflection maps from Yang-Baxter maps P3~8
B Main part: 3D reflection maps from tetrahedron maps P10~20
B Examples P22~26

O Birational transition map
O Sergeev's electrical solution
O Two-component solution associated with soliton equation




Integrability in 3D 10/27

B Tetrahedron and 3D reflection equation are conditions for
factorization of string scattering amplitude in 2+1D.

| Buk | Boundary ___

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

B Tetrahedron equation B 3D reflection equation
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Integrability in 3D 11/27

B Tetrahedron and 3D reflection equation are conditions for
factorization of string scattering amplitude in 2+1D.

| Buk | Boundary ___

2D Yang-Baxter eq. Reflection eq.

3D Tetrahedron eq. 3D Reflection eq.

B Several tetrahedron maps are known although less systematically
than Yang-Baxter maps.

O Solutions to the local YBE [Sergeev98]

O Transition maps of Lusztig's parametrizations of the canonical basis of
U,(A3) and their geometric liftings [Kuniba-Okado12]

O Solutions for relations which semi-invariants for some discrete KP
equations satisfy [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

B On the other hand, there are very few known 3D reflection maps.

O Transition maps of Lusztig's parametrizations of the canonical basis of
Uy (B,) and U, (Cy), and their geometric liftings [Kuniba-Okado12]



Notation 12/27

B et X denote an arbitrary set and x; its elements.
B We set the transposition P;;: X™ — X" by
~~ =~
P’i,j(wla e aaj'n,) — (3317 Ty Li—1y L s L1, s Lj—1y Li 3 Lj41, " amn)

B Let R: X3 - X3 denote a map given by
R(z,y,2) = (f(2,9,2),9(x,y,2), h(2,y,2)) (f,g;h: X’ = X)
O Fori <j <k, we define R;j,: X™ - X" by
Rijk(z1, - xpn) = (1, wiz1, f(zi, x5, 25), Tig1,
: axj—lag(xiaxjamk)axj—l—la
o 1, (X, T, k), T1, , Tp).

O Otherwise, we define R;j,: X™ — X™ by sandwiching R between the
permutations which sort (i, j, k) in ascending order.

O For example, if i > j > k, we define R, = PRy ;i Py

B \We use the same notation for J: X* - X*.



Tetrahedron maps 13/27

B Definition:
O LetR: X3 - X3 denote a map.
O We call R tetrahedron map if it satisfies the tetrahedron equation on X°:
RossRissRi26Raa6 = RassRi26RissRoas (=1 Ti2s3as6)  ** (%)

O We call T the tetrahedral composite of the tetrahedron map R.

B We call R involutiveif R = id and symmetricif R{33 = R3,.

O For involutive and symmetric tetrahedron maps, (*) corresponds to the
usual tetrahedron equation.




3D reflection maps 14/27

P

B Definition:

O Let]: X* - X* denote a map.
O We set a tetrahedron map by R: X3 — X3.
O We call J 3D reflection map if it satisfies the 3D reflection equation on X°:

Rg9J 3579 RagoRassJ 16781234 Rus6 = Rused1234J 1678 R2ss Ragod 3579 Rusg
[Isaev-Kulish97]




Boundarization 15/27

Y1 Y2 Y2 Y3 Y1 );2 y3
Xa Ya
- X >ya Y = p(T(P(x))):
Xy Ya
X3 X2 X3 X1 X3 X2 X1

B We set the subset of X6 by Y = {(x1,++,x¢) | x; = x3, X5 = x¢}.
O We set ¢:X4 ->Y by Cb(xl; 3:27393:334) - (xlax29x2a X3, 1174,.’1',‘4) (embeddlng)
O We set Q. Y - X4 by 90(3911 L2y L2y L3y L4, 374) — (35'1,.’15'2, 35‘3,.’15’4) (pro_jeCtion)

B Definition:

O Let R: X3 - X3 denote a tetrahedron map and T its tetrahedral composite.
O We call R boundarizable if the following condition is satisfied:
reY = T(x)eY

O In that case, we define the boundarization J: X* - X* of R by

J(x) = o(T(o(x)))




Main theorem 16/27

B Theorem:

O Let R: X3 - X3 denote an involutive, symmetric and boundarizable
tetrahedron map, and J: X* - X* its boundarization.

O Then they satisfy 3D reflection equation:

R4g9Jd3579Rog9Ras8J 16781234 Ras6 = RuseJ1234d 1678 Ro58 Ra6od 3579 Rasg




Key lemma for main theorem 17/27

B [emma:

O Let R: X3 - X3 denote an involutive and ssymmetric tetrahedron map.
Then we have the following identiy on X*°:

(RasoRazs) (Rs79Ra50Ras5R579) (Rasg Rago ) (RossRass)
X (RgrsRissR16sRe7s) (R234R134R121R537) (Ri56Ras6)
= (Rus6Rass) (R23aR124R121R331) (Rg7sRigs RigsRevs)
x (Ras58Rass) (Rago Raes ) (RaroRaseoRasg Rarg) (Ragg Ruso)
B Proof: ~: mirrored space
O By repeated uses of TE, we have the above equation.




Figure for the identity on X1° 18/27




Figure for 3D reflection equation 19/27
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Proof of main theorem 20/27

M Sketch of proof:
O Let T denote the tetrahedral composite of R.

O By using T, the identify in the previous lemma is written as follows:
(RasoRis5) T355705 (RagaRage ) (RossRass) Tiesrss T123341 (RasgRase) (%)
= (R456R456) T122343 T 165783 (RassRo5s) (Rago Ragg ) T'355705 (Rigg Raso)

O Let us act both sides of (x) on “mirrored” inputs (e.g. input x5 for both 5, 5).

O By applying T, ;501 — P Pidijrid;xr (cutting and reconnection),
we then obtain the direct product of 3DRE.
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B Introduction: reflection maps from Yang-Baxter maps P3~8
B Main part: 3D reflection maps from tetrahedron maps P10~20
B Examples P22~26

O Birational transition map
O Sergeev's electrical solution
O Two-component solution associated with soliton equation




Example1: birational transition map 22/27

B WesetR:R3, - R, by

-~ . L1T2 L2X3
R3(3317532a$3)'_>(5317w2a$3):( VT ) y =1+ 73
O This map is characterized as the transition map of parametrizations of
the positive part of SLj: [Lusztig94]

G1($3)G2($2)G1 (581) = Gz(fl)Gl (fQ)GQ(fg) G@(CU) =1 + xE?:,.i_}_l

O Actually, the transition map for SL, is the tetrahedral composite of R
and we have TE for R by considering T in two ways.  [Kuniba-Okado12]
Gl($6)G3($5)G2($4)Gl(333)G3(332)G2($1)
= Go(71)G1(42)G3(23)Ga(74)G1(T5)G3(%6)
T: (z1,--,26) — (T1, -, T¢)

O This tetrahedron map was also derived in the context of the local YBE
and by considering semi-invariants for discrete AKP equation.
[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

O We can verify R is involutive, symmetric and boundarizable.



Example1: birational transition map 23/27

B The associated 3D reflection map J: R, - R%, is calculated as
follows:

2 2
J (21,20, 3,24) = (mlxzx?’, S x2$3m4>
Y1 Y2 Y2
y1 = z1(z2 + 24) 4+ 32f, Y2 = 21(22 + 24) + 2314
O Actually, (R,]) is a known solution to 3D reflection equation.
[Kuniba-Okado12]

O J is characterized as the transition map of parametrizations of the
positive part of SP,:

Hy(z4)Ho(x3)Hi(x2)Ha(21) = Ho(z1)H1(22)Ha (23) Hy (24)

X
1 =z 1 0 0 O
1 1 0 =«

1
—x 1 1

O This correspondence is a consequence from folding the Dynkin
diagram of A5 into one of C,. [Berenstein-Zelevinsky01], [Lusztig11]



Example2: Sergeev’s electrical solution 2427

B For A € C, we set the tetrahedron map R(1): C3 - C3 by

~ o~ o~ 1 IodX
R(A) @ (21,22, 23) = (21,72, 73) = ( 1y 219: 2y 3) Yy =21+ T3 + AT1T223
O This solution was derived in the context of the local YBE and by
considering semi-invariants for discrete BKP equation.
[Sergeev98], [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

O R(A) is also characterized as the relation which elements of the
positive part of electorical Lie groups of type A satisfy:  [Lam-Pylyavskyy15]

él (583)@2(5(32)@1 (95'1) = ég(fl)él (.’fg)ég(fg)

O We can verify R(A) is involutive, symmetric and boundarizable.

B The associated 3D reflection map J(1): C* - C* is calculated as
follows:

33133%3?3 Y1 y_% 5132333334)
N ’ 2927 U1 ’ Y2
y1 = x1(xo + x4) (T2 + 24 + 2 x27374) + xgaﬁ

J()\) : (271,382,333,234) > (

Yo = x1(T2 + x4 + 2 \xow314) + X324



Example3: Two component solution 25/21

B We set the tetrahedron map R: (C?)3— (C?)3 by

= () G2 ()

L1L2 IoI3
&I —|—£L‘3 (E1—|—1B3 1 —|—2C3
= | x + x ’
(1 + x3)y1Y2 191 3Y3 (21 + 23)Y2y3
r1+ T3

T1Y1 + T3Y3 T1Y1 + T3Y3

O This solution was derived by considering semi-invariants for discrete
modified KP equation. [Kassotakis-Nieszporski-Papageorgiou-Tongas19]

O This gives the previous birational transition map when we set y; = 1.
O We can verify R is involutive, symmetric and boundarizable.




Example3: Two component solution 26/21

B The associated 3D reflection map J: (C*)*— (C?)* is calculated

as follows:
L1 ) xr3 T4
J: : , }
Y1 Y2 Y3 Y4
( 35'133‘%233 ﬂ é \ L2234 \
1 Z2 21 29
~ 2 | ozowy | 2 |’ p
Y1Y2Ysz1 271 2 w3 Y2y3ya22

21 = z1(x9 + 24)% + 327

2o = x1(x2 + 4) + 324
wy = x1Y1 (T2y2 + x4y4)2 + $3$421y3y£

we = T1Y1(T2ys + T4Ys) + T3T4Y3Y4



Concluding remarks 27/27

B Summary:

O We present a method for obtaining 3D reflection maps by using known
tetrahedron maps. The theorem is an analog of the results in 2D.

O By applying our theorem to known tetrahedron maps, we obtain
several 3D reflection maps which include new solutions.

B Remark:

O Our theorem can be extended to inhomogeneous cases, that is, the
case tetrahedron maps are defined on direct product of different sets.




